如圖,三棱錐P-ABC中,PA=a,AB=AC=2a,∠PAB=∠PAC=∠BAC=60°,求三棱錐P-ABC的體積.

答案:
解析:

  解:設D為BC的中點,連結AD、PD,作PO⊥平面ABC因∠PAB=∠PAC,故O∈AD作PE⊥AB于E,連結OE,則OE⊥AB

  在Rt△PAE中,PE=asin60°=,AE=

  在Rt△AEO中,OE=·tan30°=a

  ∴OP=

  ∴VP-ABC·S△ABC·OP=


提示:

因底面積S△ABC易求得,故根據(jù)三棱錐的體積公式只需求得高即可,而求高的關鍵是首先作出其高,也就是定出垂足的位置.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,三棱錐P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M為PC的中點.
(1)求證:平面PCB⊥平面MAB;
(2)求點A到平面PBC的距離
(3)求二面角C-PB-A的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分別交AC、PC于D、E兩點,又PB=BC,PA=AB.
(Ⅰ)求證:PC⊥平面BDE;
(Ⅱ)若點Q是線段PA上任一點,求證:BD⊥DQ;
(Ⅲ)求線段PA上點Q的位置,使得PC∥平面BDQ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鐵嶺模擬)如圖,三棱錐P-ABC中,PB⊥底面ABC,PB=BC=CA=4,E為PC的中點,M為AB的中點,點F在PA上,且AF=2FP.
(1)求證:BE⊥平面PAC;
(2)求證:CM∥平面BEF;
(3)求三棱錐F-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐P-ABC中,PA⊥平面ABC,△ABC是等邊三角形,E是BC中點,若PA=AB,則異面直線PE與AB所成角的余弦值( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐P-ABC中,AB⊥BC,∠BAC=30°,BC=5,且PA=PB=PC=AC.則點P到平面ABC的距離是
5
3
5
3

查看答案和解析>>

同步練習冊答案