【題目】如圖,在直角梯形中,,上一點(diǎn),,現(xiàn)沿折起到的位置,并使平面,點(diǎn)邊上,且滿(mǎn)足.

(1)證明:平面;

(2)若,,求二面角的大小.

【答案】(1)詳見(jiàn)解析;(2).

【解析】

(1)連接于點(diǎn),由矩形的性質(zhì)及三角形的中位線(xiàn)定理得,再根據(jù)直線(xiàn)與平面平行的判定定理即可證明;(2)通過(guò)建立空間直角坐標(biāo)系,利用平面的法向量即可求出二面角的大小.

解:(1)連接于點(diǎn),連接,

由已知可得四邊形是矩形,

的中點(diǎn),

的中點(diǎn),

,

平面平面,

平面.

(2)由(1)及平面可知兩兩相互垂直,故以為原點(diǎn),以所在直線(xiàn)分別為軸、軸、軸建立空間直角坐標(biāo)系,

,,,,

易知平面的一個(gè)法向量為,

,

設(shè)平面的法向量為

則由

,解得.

,

由圖可知二面角為銳二面角,

二面角的大小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,為橢圓的右焦點(diǎn),且橢圓上的點(diǎn)到的距離的最小值為,過(guò)作直線(xiàn)交橢圓兩點(diǎn),點(diǎn).

1)求橢圓的方程;

2)是否存在這樣的直線(xiàn),使得以,為鄰邊的平行四邊形為矩形?若存在,求出直線(xiàn)的斜率;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種新型嫁接巨豐葡萄,在新疆地區(qū)種植一般畝產(chǎn)不低于5千斤,產(chǎn)量高的達(dá)到上萬(wàn)斤.受嫁接年限的影響,其產(chǎn)量一般逐年衰減,若在新疆地區(qū)平均畝產(chǎn)量低于5千斤,則從新嫁接.以下是新疆某地區(qū)從2014年開(kāi)始嫁接后每年的平均畝產(chǎn)量y(單位:千斤)的數(shù)據(jù)表:

年份

2014

2015

2016

2017

2018

年份代號(hào)x

1

2

3

4

5

平均畝產(chǎn)量y

8.2

7.8

7.2

6.6

5.4

1)求y關(guān)于x的線(xiàn)性回歸方程;

2)利用(1)中的回歸直線(xiàn)方程,預(yù)計(jì)哪一年開(kāi)始從新嫁接.

附:回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)公式分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為貫徹落實(shí)黨中央全面建設(shè)小康社會(huì)的戰(zhàn)略部署,某貧困地區(qū)的廣大黨員干部深入農(nóng)村積極開(kāi)展“精準(zhǔn)扶貧”工作.經(jīng)過(guò)多年的精心幫扶,截至2018年底,按照農(nóng)村家庭人均年純收入8000元的小康標(biāo)準(zhǔn),該地區(qū)僅剩部分家庭尚未實(shí)現(xiàn)小康.現(xiàn)從這些尚未實(shí)現(xiàn)小康的家庭中隨機(jī)抽取50戶(hù),得到這50戶(hù)家庭2018年的家庭人均年純收入的頻率分布直方圖,如圖.

注:在頻率分布直方圖中,同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表.

1)估計(jì)該地區(qū)尚未實(shí)現(xiàn)小康的家庭2018年家庭人均年純收入的平均值;

220197月,為估計(jì)該地能否在2020年全面實(shí)現(xiàn)小康,收集了當(dāng)?shù)刈钬毨У囊粦?hù)家庭201916月的人均月純收入的數(shù)據(jù),作出散點(diǎn)圖如下.

根據(jù)相關(guān)性分析,發(fā)現(xiàn)其家庭人均月純收入與時(shí)間代碼之間具有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系(記20191月、2月……分別為,,…,依此類(lèi)推).試預(yù)測(cè)該家庭能否在2020年實(shí)現(xiàn)小康生活.

參考數(shù)據(jù):,.

參考公式:線(xiàn)性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動(dòng)弦,直線(xiàn)軸交于點(diǎn),直線(xiàn)與直線(xiàn)的交點(diǎn)為.

1)證明:點(diǎn)恒在橢圓.

2)設(shè)直線(xiàn)與橢圓只有一個(gè)公共點(diǎn),直線(xiàn)與直線(xiàn)相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,其中為常數(shù).

1)證明: ;

2)是否存在,使得為等差數(shù)列?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左焦點(diǎn)為F,上頂點(diǎn)為A,直線(xiàn)AF與直線(xiàn) 垂直,垂足為B,且點(diǎn)A是線(xiàn)段BF的中點(diǎn).

(I)求橢圓C的方程;

(II)若M,N分別為橢圓C的左,右頂點(diǎn),P是橢圓C上位于第一象限的一點(diǎn),直線(xiàn)MP與直線(xiàn) 交于點(diǎn)Q,且,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)當(dāng)時(shí),若函數(shù)有兩個(gè)極值點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),求證:對(duì)于,恒成立;

(3)若存在,使得當(dāng)時(shí),恒有成立,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案