過點(diǎn)M(3,4),傾斜角為的直線與圓C:為參數(shù))相交于A、B兩點(diǎn),試確定的值.

15

解析試題分析:將過點(diǎn)M(3,4),傾斜角為的直線寫成參數(shù)方程.再將圓的參數(shù)方程寫成一般方程,聯(lián)立后求得含t的一元二次方程.將的值轉(zhuǎn)化為韋達(dá)定理的根的乘積關(guān)系.即可得結(jié)論.本小題主要就是考查直線的參數(shù)方程中t的幾何意義.
試題解析:直線l的參數(shù)方程為.代入C:.方程得到:.設(shè)為方程兩根,則.
考點(diǎn):1.直線的參數(shù)方程.2.圓的參數(shù)方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知直線的參數(shù)方程為.以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.當(dāng)直線與曲線相切時(shí),則=         ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,求過橢圓 (φ為參數(shù))的右焦點(diǎn),且與直線 (t為參數(shù))平行的直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線,各有一個(gè)交點(diǎn).當(dāng)時(shí),這兩個(gè)交點(diǎn)間的距離為,當(dāng)時(shí),這兩個(gè)交點(diǎn)重合.
(Ⅰ)分別說明,是什么曲線,并求出a與b的值;
(Ⅱ)設(shè)當(dāng)時(shí),,的交點(diǎn)分別為,當(dāng)時(shí),,的交點(diǎn)分別為,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程  
已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為。
(Ⅰ)把的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求交點(diǎn)的極坐標(biāo)()。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本小題滿分10分)
已知直線l經(jīng)過點(diǎn)P(,1),傾斜角,在極坐標(biāo)系下,圓C的極坐標(biāo)方程為。
(1)寫出直線l的參數(shù)方程,并把圓C的方程化為直角坐標(biāo)方程;
(2)設(shè)l與圓C相交于A,B兩點(diǎn),求點(diǎn)P到A,B兩點(diǎn)的距離之積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在橢圓=1上找一點(diǎn),使這一點(diǎn)到直線x-2y-12=0的距離最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l經(jīng)過點(diǎn)P(1,1),傾斜角α=.
(1)寫出直線l的參數(shù)方程;
(2)設(shè)l與圓x2+y2=4相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線l1的參數(shù)方程為(t為參數(shù)),直線l2的方程為y=3x+4,求l1與l2間的距離.

查看答案和解析>>

同步練習(xí)冊答案