8.關(guān)于x的不等式組$\left\{{\begin{array}{l}{{x^2}-x-2>0}\\{2{x^2}+(2k+5)x+5k<0}\end{array}}\right.$的解集為A,若集合A中有且僅有一個整數(shù),求實數(shù)k的取值范圍.

分析 求出第一個不等式的解,討論k的范圍得出第二個不等式的解,根據(jù)集合A中只含有一個整數(shù)得出第二個不等式解的端點的范圍,從而得出k的范圍.

解答 解:解不等式x2-x-2>0得x<-1或x>2.
解方程2x2+(2k+5)x+5k=0得x1=-$\frac{5}{2}$,x2=-k.
(1)若-k$<-\frac{5}{2}$即k$>\frac{5}{2}$時,不等式2x2+(2k+5)x+5k<0的解為-k<x<-$\frac{5}{2}$,
此時不等式組的解集為A=(-k,-$\frac{5}{2}$),
∵集合A中有且僅有一個整數(shù),∴-4≤-k<-3,解得3<k≤4.
(2)若-k>-$\frac{5}{2}$即k<$\frac{5}{2}$時,不等式2x2+(2k+5)x+5k<0的解為-$\frac{5}{2}$<x<-k,
此時不等式組的解集為A=(-$\frac{5}{2}$,-k)或A=(-$\frac{5}{2}$,-1)或A=(-$\frac{5}{2}$,-1)∪(2,-k),
∵集合A中有且僅有一個整數(shù),∴-2<-k≤3,解得-3≤k<2.
綜上,k的取值范圍是(3,4]∪[-3,2).

點評 本題考查了一元二次不等式的解法,分類討論思想,借助數(shù)軸可方便得出區(qū)間端點的范圍,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.實數(shù)a,b滿足2a+2b=1,則函數(shù)f(x)=x2-2(a+b)x+2在[-2,2]上( 。
A.單調(diào)遞增B.單調(diào)遞減C.先增后減D.先減后增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.有10道數(shù)學(xué)單項選擇題,每題選對得4分,不選或選錯得0分.已知某考生能正確答對其中的7道題,余下的3道題每題能正確答對的概率為$\frac{1}{3}$.假設(shè)每題答對與否相互獨立,記ξ為該考生答對的題數(shù),η為該考生的得分,則P(ξ=9)=$\frac{2}{9}$,Eη=32(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.袋中裝有大小相同的四個球,四個球上分別標(biāo)有數(shù)字“2”,“3”,“4”,“6”.現(xiàn)從中隨機(jī)選取三個球,則所選的三個球上的數(shù)字能構(gòu)成等差數(shù)列的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正項數(shù)列{an},其前n項和為Sn,且an=2$\sqrt{{S}_{n}}$-1.
(1)求數(shù)列{an}的通項公式;
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若正數(shù)m,n滿足m+n+3=mn,不等式(m+n)x2+2x+mn-13≥0恒成立,則實數(shù)x的取值范圍是(  )
A.$({-∞,-1}]∪[{\frac{2}{3},+∞})$B.$({-∞,-1}]∪[{\frac{1}{2},+∞})$C.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{3},+∞})$D.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{6},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知(x0,y0,z0)是關(guān)于x、y、z的方程組$\left\{\begin{array}{l}{ax+by+cz=0}\\{cx+ay+bz=0}\\{bx+cy+az=0}\end{array}$的解.
(1)求證:$|\begin{array}{l}{a}&&{c}\\{c}&{a}&\\&{c}&{a}\end{array}|$=(a+b+c)•$|\begin{array}{l}{a}&&{1}\\{c}&{a}&{1}\\&{c}&{1}\end{array}|$;
(2)設(shè)z0=1,a、b、c分別為△ABC三邊長,試判斷△ABC的形狀,并說明理由;
(3)設(shè)a、b、c為不全相等的實數(shù),試判斷“a+b+c=0”是“x02+y02+z02>0”的④條件,并證明:①充分非必要;②必要非充分;③充分且必要;④非充分非充要.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:“m=-1”,命題q:“直線x-y=0與直線x+m2y=0互相垂直”,則命題p是命題q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和為Sn,且Sn=2an-3n(n∈N+).
(1)求a1,a2,a3的值;
(2)是否存在常數(shù)λ,使得{an+λ}為等比數(shù)列?若存在,求出λ的值和通項公式an,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案