x>0是-1>0成立的

A.充分不必要條件                  B.必要不充分條件

C.充要條件                            D.既不充分也不必要條件

B?

解析:∵-1>0,∴>0.解得0<x<1.?

x>0是0<x<1的必要不充分條件.∴選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是(0,+∞)上可導(dǎo)函數(shù),且xf′(x)>f(x)在x>0時(shí)恒成立,又g(x)=ln(1+x)-x(x>-1)
①求g(x)的最值
②求證x1>0,x2>0時(shí)f(x1+x2)>f(x1)+f(x2)并猜想一個(gè)一般結(jié)論,加以證明
③求證
1
22
ln22+
1
32
ln32+…+
1
(n+1)2
ln(n+1)2
n
2(n+1)(n+2)
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•和平區(qū)二模)已知函數(shù)f(x)=lnx+x2-ax.
(I)若函數(shù)f(x)在其定義域上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)當(dāng)a=3時(shí),求出f(x)的極值:
(III)在(I)的條件下,若f(x)≤
1
2
(3x2+
1
x2
-6x)
在x∈(0,1]內(nèi)恒成立,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)是定義在R上的函數(shù),當(dāng)x<0時(shí),f(x)>1,對(duì)任意實(shí)數(shù)x、y∈R,有f(x+y)=f(x)·f(y).

(1)求證:f(0)=1,且當(dāng)x>0時(shí),有0<f(x)<1;

(2)若數(shù)列{an}滿足a1=f(0),且f(an+1)=,n∈N*.

①求an;

②若不等式(1+)(1+)…(1+)≥k,對(duì)于n∈N*都成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

(2)若a<0,且對(duì)任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問(wèn)中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問(wèn)中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識(shí)來(lái)解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時(shí)恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習(xí)冊(cè)答案