已知函數(shù){an}滿足a1=1,an+1-an=2n+1
(I)求{an}的通項(xiàng)公式;
(II)求-a1+a2-a3+…+(-1)nan
【答案】分析:(I)由已知,數(shù)列后項(xiàng)與前項(xiàng)之差成等差數(shù)列,可用當(dāng)n≥2 時(shí)  an=a1+(a2-a1)+(a3-a2)+…+(an-a n-1)求解.
(II)觀察式子特點(diǎn),利用a2-b2=(a+b)(a-b)將項(xiàng)進(jìn)行降次,轉(zhuǎn)化成有特殊性質(zhì)的數(shù)列求和.
解答:解:(I)當(dāng)n≥2 時(shí)  an=a1+(a2-a1)+(a3-a2)+…+(an-a n-1)=1+3+5+…+(2n-1)=n2    
且對(duì)于n=也成立,∴an=n2  
(II)記Sn=-a1+a2-a3+…+(-1)nan
當(dāng)為偶數(shù)時(shí)Sn=(-12+22)+(-32+42)++…[(n-1)2-n2]
=(1+2)+(3+4)+…[(n-1)+(n)]
=  
當(dāng)為奇數(shù)時(shí)
Sn=-12+(22-32)+(42-52)+…[(n-1)2-n2]
=-1-(2+3)-(4+5)-…-[(n-1)+n]
=-
綜上,Sn=(-1)n•
點(diǎn)評(píng):本題考查累和法,分組法數(shù)列求和,以及轉(zhuǎn)化的思想方法.要注意n的奇偶性對(duì)分組的影響.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù){an}滿足a1=1,an+1-an=2n+1
(I)求{an}的通項(xiàng)公式;
(II)求-a1+a2-a3+…+(-1)nan

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù){an}滿足:a1=2t,t2-2tan-1+an-1an=0,n=2,3,4,…(其中t為常數(shù)且t≠0).
(I)求證:數(shù)列{
1an-t
}
為等差數(shù)列;
(II)求數(shù)列{an}的通項(xiàng)公式;
(III)設(shè)bn=n•2nan,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù){an}滿足a1=1,an+1-an=2n+1
(I)求{an}的通項(xiàng)公式;
(II)求-a1+a2-a3+…+(-1)nan

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù){an}滿足:a1=2t,t2-2tan-1+an-1an=0,n=2,3,4,…(其中t為常數(shù)且t≠0).
(I)求證:數(shù)列{
1
an-t
}
為等差數(shù)列;
(II)求數(shù)列{an}的通項(xiàng)公式;
(III)設(shè)bn=n•2nan,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案