【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
A.0.35
B.0.25
C.0.20
D.0.15
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)校本課程開設(shè)了A,B,C,D共4門選修課,每個(gè)學(xué)生必須且只能選修1門選修課,現(xiàn)有該校的甲、乙、丙3名學(xué)生.
(1)求這3名學(xué)生選修課所有選法的總數(shù);
(2)求恰有2門選修課沒有被這3名學(xué)生選擇的概率;
(3)求A選修課被這3名學(xué)生選擇的人數(shù)ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,其過點(diǎn),其長軸的左右兩個(gè)端點(diǎn)分別為,直線交橢圓于兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線的斜率分別為,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x
(1)討論f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)﹣m在[﹣ ,3]上有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)設(shè)函數(shù)h(x)=ex﹣ex+4n2﹣2n(e為自然對(duì)數(shù)的底數(shù)),如果對(duì)任意的x1 , x2∈[ ,2],都有f(x1)≤h(x2)恒成立,求實(shí)數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)g(x)=log2 (x>0),關(guān)于方程|g(x)|2+m|g(x)|+2m+3=0有三個(gè)不同實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1,3,5,7,9這五個(gè)數(shù)中,每次取出兩個(gè)不同的數(shù)分別記為a,b,共可得到lga﹣lgb的不同值的個(gè)數(shù)是( )
A.9
B.10
C.18
D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠為了研究印刷單冊(cè)書籍的成本y(單位:元)與印刷冊(cè)數(shù)x(單位:千冊(cè))之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個(gè)回歸方程,甲:
為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):
(1)(。┩瓿上卤恚ㄓ(jì)算結(jié)果精確到0.1):
(ⅱ)分別計(jì)算模型甲與模型乙的殘差平方和及,并通過比較,的大小,判斷哪個(gè)模型擬合效果更好.
(2)該書上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場調(diào)查,新需求量為8千冊(cè)(概率為0.8)或10千冊(cè)(概率為0.2),若印刷廠以沒測5元的價(jià)格將書籍出售給訂貨商,問印刷廠二次印刷8千冊(cè)還是10千冊(cè)恒獲得更多的利潤?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書的成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com