3、函數(shù)f(x)=ax-1-3的圖象過(guò)定點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是
(1,-2)
分析:底數(shù)含參數(shù)的指數(shù)型函數(shù)過(guò)定點(diǎn),則指數(shù)式的指數(shù)等于0,先求出 x,再代入函數(shù)解析式求出函數(shù)值,從而得到定點(diǎn)的坐標(biāo).
解答:解:函數(shù)f(x)=ax-1-3的圖象過(guò)的定點(diǎn)坐標(biāo)與a無(wú)關(guān),
∴a的指數(shù)等于0,
即 x-1=0,x=1,
此時(shí)函數(shù)f(x)=a0-3=-2,
故定點(diǎn)的坐標(biāo)為(1,-2),
故答案為:(1,-2).
點(diǎn)評(píng):本題考查指數(shù)函數(shù)的性質(zhì)與特殊點(diǎn),底數(shù)含參數(shù)的指數(shù)型函數(shù)過(guò)定點(diǎn),則指數(shù)式的指數(shù)等于0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+
bx
+c(a>0)的圖象在點(diǎn)(1,f(1))處的切線方程為y=x-1.
(1)用a表示出b,c;
(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a≠0,函數(shù)f(x)=ax(x-2)2(x∈R)
(Ⅰ)若函數(shù)f(x)有極大值32,求實(shí)數(shù)a的值;
(Ⅱ)若對(duì)于x∈[-2,1],不等式f(x)<
329
恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax(a>0且a≠1)在[-1,1]上的最大值與最小值之和為
10
3
,則a的值為
3或
1
3
3或
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+b,其中f(0)=-2,f(2)=0,則f(3)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•惠州模擬)(注:本題第(2)(3)兩問(wèn)只需要解答一問(wèn),兩問(wèn)都答只計(jì)第(2)問(wèn)得分)
已知函數(shù)f(x)=ax+xln|x+b|是奇函數(shù),且圖象在點(diǎn)(e,f(e))處的切線斜率為3(e為自然對(duì)數(shù)的底數(shù)).
(1)求實(shí)數(shù)a、b的值;
(2)若k∈Z,且k<
f(x)x-1
對(duì)任意x>1恒成立,求k的最大值;
(3)當(dāng)m>n>1(m,n∈Z)時(shí),證明:(nmmn>(mnnm

查看答案和解析>>

同步練習(xí)冊(cè)答案