(07年上海卷理)已知是定義域?yàn)檎麛?shù)集的函數(shù),對(duì)于定義域內(nèi)任意的,若 成立,則成立,下列命題成立的是
A、若成立,則對(duì)于任意,均有成立;
B、若成立,則對(duì)于任意的,均有成立;
C、若成立,則對(duì)于任意的,均有成立;
D、若成立,則對(duì)于任意的,均有成立。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年上海卷理)已知雙曲線,則以雙曲線中心為焦點(diǎn),以雙曲線左焦點(diǎn)為頂點(diǎn)的拋物線方程為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年上海卷理)(18分)
已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中。如圖,設(shè)點(diǎn),,是相應(yīng)橢圓的焦點(diǎn),,和,是“果圓” 與,軸的交點(diǎn),
(1)若三角形是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程;
(2)若,求的取值范圍;
(3)一條直線與果圓交于兩點(diǎn),兩點(diǎn)的連線段稱為果圓的弦。是否存在實(shí)數(shù),使得斜率為的直線交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個(gè)橢圓上?若存在,求出所有的值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年上海卷理)已知圓的方程,為圓上任意一點(diǎn)(不包括原點(diǎn))。直線的傾斜角為弧度,,則的圖象大致為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com