已知圓x2+y2=2的切線l與兩坐標(biāo)軸分別交于點(diǎn)A,B兩點(diǎn),則△AOB(O為坐標(biāo)原點(diǎn))面積的最小值為
 
考點(diǎn):圓的切線方程
專題:計(jì)算題,直線與圓
分析:設(shè)切點(diǎn)P(x0,y0),則l:x0x+y0y=2,求出A,B的坐標(biāo),可得三角形的面積,利用基本不等式,可求△AOB面積的最小值.
解答: 解:設(shè)切點(diǎn)P(x0,y0),則l:x0x+y0y=2,
A(
2
x0
, 0)
,B(0, 
2
y0
)
,則S△AOB=
2
|x0||y0|

2=
x
2
0
+
y
2
0
≥2|x0||y0|
,即|x0||y0|≤1,
∴S△AOB≥2,當(dāng)|x0|=|y0|=
2
時(shí)取等號(hào),
∴△AOB面積的最小值為2.
故答案為:2.
點(diǎn)評(píng):本題考查圓的切線方程,考查三角形面積的計(jì)算,考查基本不等式的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),且離心率e=
1
2
,若點(diǎn)P為橢圓C上的一個(gè)動(dòng)點(diǎn),且|PF1|•|PF2|的最大值為4.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0),使得以PM、PN為鄰邊的平行四邊形是菱形?如果存在,求出m的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
2
3x+1
+sinx,則f(-5)+f(-4)+f(-3)+f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)+f(4)+f(5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用符號(hào)[x)表示超過(guò)x的最小整數(shù),如[3.9)=4,[-1.08)=-1.有下列命題:
①若函數(shù)f(x)=[x)-x,x∈R,則值域?yàn)椋?,1];
②若x,y∈{
1
2
,3,
7
3
},則[x)•[y)=3的概率為
1
3

③若x∈(1,4),則方程若[x)-x=
1
2
有三個(gè)根;
④如果數(shù)列{an}是等比數(shù)列,n∈N*,那么數(shù)列{[an)}一定不是等比數(shù)列.
其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x+y-1≥0
x≤2
y≤3
,則z=y-x的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

歐陽(yáng)修《賣油翁》中寫到:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕.己知銅錢是直徑為4cm的圓面,中間有邊長(zhǎng)為1cm的正方形孔,若隨機(jī)向銅錢上滴一滴油(油滴整體落在銅錢內(nèi)),則油滴整體(油滴是直徑為0.2cm的球)正好落入孔中的概率是
 
(不作近似計(jì)算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,∠A=60°,∠A的平分線交BC于D,若AB=4,且
AD
=
1
4
AC
AB
(λ∈R)
,則AD的長(zhǎng)為( 。
A、2
3
B、3
3
C、4
3
D、5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?∞,+∞),如果f(x+2014)=
2
sinx,x≥0
lg(-x),x<0
那么f(2014+
π
4
)•f(-7986)=( 。
A、2014
B、4
C、
1
4
D、
1
2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,左焦點(diǎn)到坐標(biāo)原點(diǎn)、右焦點(diǎn)、右準(zhǔn)線的距離依次成等差數(shù)列.
(1)求橢圓的離心率
(2)若直線l與此橢圓相交于A,B兩點(diǎn),且AB中點(diǎn)M為(-2,1),|AB|=4
3
,求直線l的方程和橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案