已知定義在R上的函數(shù)f(x)滿足f(1)=2,f'(x)<1,則不等式f(x2)<x2+1解集   
【答案】分析:根據(jù)條件構(gòu)造F(x)=f(x)-x,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,然后將f(x2)<x2+1可轉(zhuǎn)化成f(x2)-x2<f(1)-1即F(x2)<F(1),根據(jù)單調(diào)性建立關(guān)系,解之即可.
解答:解:令F(x)=f(x)-x,又f'(x)<1
則F'(x)=f'(x)-1<0
∴F(x)在R上單調(diào)遞減
∵f(1)=2
∴f(x2)<x2+1可轉(zhuǎn)化成f(x2)-x2<f(1)-1
即F(x2)<F(1)
根據(jù)F(x)在R上單調(diào)遞減則x2>1
解得x∈(-∞,-1)∪(1,+∞).
故答案為:(-∞,-1)∪(1,+∞).
點(diǎn)評:本題考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的能力,以及利用構(gòu)造法新函數(shù)解不等式,同時考查了轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足下列條件:
①對任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0
,
②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對x∈R都有f(2+x)=f(2-x),當(dāng)f(-3)=-2時,f(2013)的值為(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),對任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對稱,則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習(xí)冊答案