設(shè)Sn為數(shù)列{an}的前n項(xiàng)和(n=1,2,3,…),按如下方式定義數(shù)列{an}:a1=m(m∈N*),對(duì)任意k∈N*,k>1,設(shè)ak為滿足0≤ak≤k-1的整數(shù),且k整除Sk
(1)當(dāng)m=9時(shí),試給出{an}的前6項(xiàng);
(2)證明:?k∈N*,有
Sk+1
k+1
Sk
k
+1;
(3)證明:對(duì)任意的m,數(shù)列{an}必從某項(xiàng)起成為常數(shù)列.
考點(diǎn):數(shù)列的應(yīng)用
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)利用定義,可寫出{an}的前6項(xiàng);
(2)利用放縮法證明k∈N*,有
Sk+1
k+1
Sk
k
+1;
(3)確定數(shù)列{
Sk
k
}必將從某項(xiàng)起變?yōu)槌?shù),再證明:對(duì)任意的m,數(shù)列{an}必從某項(xiàng)起成為常數(shù)列.
解答: (1)解:m=9時(shí),數(shù)列為9,1,2,0,3,3,3,3,
即前六項(xiàng)為9,1,2,0,3,3.
(2)證明:?k∈N*,有
Sk+1
k+1
Sk+1
k
=
Sk+ak+1
k
Sk+k
k
=
Sk
k
+1;
(3)證明:∵?k∈N*,有
Sk
k
∈N*,
由(2)可得
Sk+1
k+1
Sk
k
,
S1
1
=m為定值且
Sk
k
單調(diào)不增,
∴數(shù)列{
Sk
k
}必將從某項(xiàng)起變?yōu)槌?shù),
不妨設(shè)從l項(xiàng)起
Sk
k
為常數(shù),則
Sl+1
l+1
=
Sl
l
,
于是al+1=Sl+1-Sl=
Sl
l
,
∴al+2=al+1=
Sl
l
,
∴數(shù)列{an}當(dāng)n≥l+1時(shí)成為常數(shù)列.
點(diǎn)評(píng):本題考查數(shù)列的應(yīng)用,考查新定義,考查學(xué)生分析解決問題的能力,正確理解新定義是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一門高射炮射擊一次擊中目標(biāo)的概率是0.4,那么至少需要這樣的高射炮多少門同時(shí)對(duì)某一目標(biāo)射擊一次,才能使該目標(biāo)被擊中的概率超過96%(提供的數(shù)據(jù):lg2=0.30,lg3=0.48)(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察1,1+3,1+3+5,1+3+5+7的值;猜測(cè)1+3+5+…+(2n-1)的結(jié)果;用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=3
e1
-2
e2
b
=4
e1
-
e2
,其中
e1
=(1,0),
e2
=(0,1).
(1)求:
a
b
;
(2)求:|
a
+
b
|及
a
b
的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校100名學(xué)生期中考試語文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100]
(1)求圖中a的值并計(jì)算[70,100]的人數(shù);
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績(jī)的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=-2n+11.
(1)數(shù)列{an}的前幾項(xiàng)和最大;
(2)如果bn=|an|(n∈N),求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B兩點(diǎn)在河的兩岸,一測(cè)量者在A的同側(cè)所在的河岸邊選定一點(diǎn)C,測(cè)出AC的距離為50m,∠ACB=45°,∠CAB=105°后,算出A、B兩點(diǎn)的距離為
 
m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱線長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=
2
2

(Ⅰ)求證:EF∥平面ABCD;
(Ⅱ)求證:AC⊥BE;
(Ⅲ)三棱錐A-BEF的體積是否為定值,若是,求出該定值;若不是,說明理由(棱錐的體積V=
1
3
Sh).

查看答案和解析>>

同步練習(xí)冊(cè)答案