(本小題滿分12分)
設(shè)橢圓:的左、右焦點分別為,上頂點為,過點與垂直的直線交軸負(fù)半軸于點,且.
(1)求橢圓的離心率;
(2)若過、、三點的圓恰好與直線:相切,求橢圓的
方程;
(3)在(2)的條件下,過右焦點作斜率為的直線與橢圓交于、兩
點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,
如果存在,求出的取值范圍,如果不存在,說明理由.
(1);(2);(3)
【解析】(1) 設(shè)Q(x0,0),由(c,0),A(0,b),知
,由 ,可知為中點.
從而得到,,進(jìn)一步計算可求出記心率的值.
(2)由⑴知,可求出△AQF的外接圓圓心為(-,0),半徑r=|FQ|=,
所以再利用圓心到直線l的距離等于半徑a,可得到關(guān)于a的方程解出a值,從而得到橢圓C的方程.
(3) 設(shè),平行四邊形是菱形可轉(zhuǎn)化為, ,
所以,則,然后直線MN與橢圓方程聯(lián)立,消y,再借助韋達(dá)定理來解決即可.
解:(1)設(shè)Q(x0,0),由(c,0),A(0,b)
知
,
由于 即為中點.
故,
故橢圓的離心率 (3 分)
(2)由⑴知得于是(,0) Q,
△AQF的外接圓圓心為(-,0),半徑r=|FQ|=
所以,解得=2,∴c =1,b=,
所求橢圓方程為 (6 分)
(3)由(Ⅱ)知 :
代入得
設(shè),
則, (8分)
由于菱形對角線垂直,則
故
則
(10分)
由已知條件知且
故存在滿足題意的點P且的取值范圍是. (12 分)
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com