“m=3”是“橢圓
x2
4
+
y2
m
=1
焦距為2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件
先看充分性,
當(dāng)m=3時(shí),橢圓方程為
x2
4
+
y2
3
=1
,可得c=
a2-b2
=
4-3
=1,
∴橢圓的焦距為2c=2.即橢圓
x2
4
+
y2
m
=1
焦距為2,充分性成立;
再看必要性,
當(dāng)橢圓
x2
4
+
y2
m
=1
焦距為2時(shí),若橢圓的焦點(diǎn)在x軸上,則c=
a2-b2
=
4-m
=1,解得m=3;
若橢圓的焦點(diǎn)在y軸上,則c=
a2-b2
=
m-4
=1,解得m=5.
∴m的值為3或5,可得必要性不成立.
因此“m=3”是“橢圓
x2
4
+
y2
m
=1
焦距為2”的充分不必要條件.
故選:A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),A(2,0)為長(zhǎng)軸的一個(gè)端點(diǎn),弦BC過(guò)橢圓的中心O,且
AC
BC
=0,|
OC
-
OB
|
=2|
BC
-
BA
|
,則其焦距為( 。
A.
2
6
3
B.
4
3
3
C.
4
6
3
D.
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓
x2
2
+
y2
3
=1
,F(xiàn)1、F2是它的焦點(diǎn),AB是過(guò)F1的弦,則△ABF2的周長(zhǎng)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左,右兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,短軸的上端點(diǎn)為B,短軸上的兩個(gè)三等分點(diǎn)為P,Q,且F1PF2Q為正方形.
(1)求橢圓的離心率;
(2)若過(guò)點(diǎn)B作此正方形的外接圓的切線在x軸上的一個(gè)截距為-
3
2
4
,求此橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),A為左頂點(diǎn),B為短軸一頂點(diǎn),F(xiàn)為右焦點(diǎn)且AB⊥BF,則這個(gè)橢圓的離心率等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線
x2
4
+
y2
3
=1
與曲線
x2
4-k
+
y2
3-k
=1
(k<3)的( 。
A.長(zhǎng)軸長(zhǎng)相等B.短軸長(zhǎng)相等C.離心率相等D.焦距相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),其中一個(gè)焦點(diǎn)為F1
3
,0),且該焦點(diǎn)于長(zhǎng)軸上較近的端點(diǎn)距離為2-
3

(1)示此橢圓的標(biāo)準(zhǔn)方程及離心率;
(2)設(shè)F2是橢圓另一個(gè)焦點(diǎn),若P是該橢圓上一個(gè)動(dòng)點(diǎn),求
PF1
PF2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,且過(guò)點(diǎn)(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=x+m與橢圓C交于兩點(diǎn)A,B,O為坐標(biāo)原點(diǎn),若△OAB為直角三角形,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若動(dòng)圓M與圓C1:(x+4)2+y2=2外切,且與圓C2:(x-4)2+y2=2內(nèi)切,則動(dòng)圓圓心M的軌跡方程________.

查看答案和解析>>

同步練習(xí)冊(cè)答案