12.已知集合U={1,2,3,4,5,6},A={1,2,5},B={1,3,4},則(∁UA)∩B的真子集個(gè)數(shù)為(  )
A.1B.2C.3D.4

分析 求出A的補(bǔ)集,從而求出其和B的交集,求出(∁UA)∩B的真子集的個(gè)數(shù)即可.

解答 解:U={1,2,3,4,5,6},
A={1,2,5},B={1,3,4},
則(∁UA)={3,4,6}
(∁UA)∩B={3,4}
故其真子集個(gè)數(shù)為:22-1=3個(gè),
故選:C.

點(diǎn)評(píng) 考查全集、補(bǔ)集的概念,以及真子集的概念.難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.頂點(diǎn)在原點(diǎn)的拋物線C關(guān)于x軸對(duì)稱,點(diǎn)P(1,2)在此拋物線上.
(Ⅰ)寫出該拋物線C的方程及其準(zhǔn)線方程;
(Ⅱ)若直線y=x與拋物線C交于A,B兩點(diǎn),求△ABP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)Sn是公差為d的等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列S6-S3,S9-S6,S12-S9是等差數(shù)列,且其公差為9d.通過類比推理,可以得到結(jié)論:設(shè)Tn是公比為2的等比數(shù)列{bn}的前n項(xiàng)積,則數(shù)列$\frac{T_6}{T_3}$,$\frac{T_9}{T_6}$,$\frac{{{T_{12}}}}{T_9}$是等比數(shù)列,且其公比的值是512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸兩端點(diǎn)為B1(0,-1)、B2(0,1),離心率e=$\frac{\sqrt{3}}{2}$,點(diǎn)P是橢圓C上不在坐標(biāo)軸上的任意一點(diǎn),直線B1P和B2P分別與x軸相交于M,N兩點(diǎn),
(Ⅰ)求橢圓C的方程和|OM|•|ON|的值;
(Ⅱ)若點(diǎn)M坐標(biāo)為(1,0),過M點(diǎn)的直線l與橢圓C相交于A,B兩點(diǎn),試求△ABN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義在R上的奇函數(shù)f(x)滿足f(x+1)=-f(x),當(dāng)x∈(0,1)時(shí),f(x)=x-1,則函數(shù)y=f(x)-log4|x|的零點(diǎn)個(gè)數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{ax+1-4a,}&{x<1}\\{{x^2}-3ax,}&{x≥1}\end{array}}\right.$,若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是($\frac{2}{3}$,+∞)∪(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,6},那么(∁UA)∩B等于( 。
A.{2,4,6}B.{4,6}C.{3,4,6}D.{2,3,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=3cos(ωx-$\frac{π}{4}$)(1<ω<14)的圖象關(guān)于x=$\frac{π}{12}$對(duì)稱,則ω等于( 。
A.2B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)f(x)=9x-2.3x,則f-1(0)=log32.

查看答案和解析>>

同步練習(xí)冊(cè)答案