(08年長(zhǎng)郡中學(xué)二模理)(13分)  已知橢圓方程為,長(zhǎng)軸兩端點(diǎn)為,短軸上端點(diǎn)為

(1)若橢圓焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上運(yùn)動(dòng),當(dāng)的最大面積為3時(shí),求其橢圓方程;

(2)對(duì)于(1)中的橢圓方程,作以為直角頂點(diǎn)的內(nèi)接于橢圓的等腰直角三角形,設(shè)直線的斜率為,試求的值;

(3)過(guò)任作垂直于,點(diǎn)在橢圓上,試問(wèn)在軸上是否存在點(diǎn),使得直線的斜率與的斜率之積為定值,如果存在,找出一個(gè)點(diǎn)的坐標(biāo),如果不存在,說(shuō)明理由.

解析:(1)由已知:, ,聯(lián)立方程組求得:

所求方程為:        。。。。。。4分                         

(2)依題意設(shè)所在的直線方程為,代入橢圓方程并整理得:,則同理 

,即 故

                 8分

(3)由題意知設(shè)

                                            

又由,同理

所以.

從而得所以   

(為定值).對(duì)比上式可知:

選取,則得直線的斜率與的斜率之積為           13分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年長(zhǎng)郡中學(xué)二模理) (12分)  某工廠為了保障安全生產(chǎn),每月初組織工人參加一次技能測(cè)試. 甲、乙兩名工人通過(guò)每次測(cè)試的概率分別是. 假設(shè)兩人參加測(cè)試是否通過(guò)相互之間沒(méi)有影響.

   (I)求甲工人連續(xù)3個(gè)月參加技能測(cè)試至少1次未通過(guò)的概率;

   (II)求甲、乙兩人各連續(xù)3個(gè)月參加技能測(cè)試,甲工人恰好通過(guò)2次且乙工人恰好通過(guò)1次的概率;

   (III)工廠規(guī)定:工人連續(xù)2次沒(méi)通過(guò)測(cè)試,則被撤銷上崗資格. 求乙工人恰好參加4次測(cè)試后被撤銷上崗資格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年長(zhǎng)郡中學(xué)二模理)(13分)如圖,公園有一塊邊長(zhǎng)為2a的等邊三角形的邊角地,今要修成草地,并使DE把草坪分成面積相等的兩部分,如果。

   (1)將用x表示y的函數(shù)關(guān)系;并指出函數(shù)的定義域;

   (2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,問(wèn)DE的位置應(yīng)如何確定?如果DE是觀光路線,則希望它最長(zhǎng),問(wèn)DE的位置應(yīng)如何確定?說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年長(zhǎng)郡中學(xué)二模理)(13分)已知函數(shù),其中。設(shè)兩曲線有公共點(diǎn),且在公共點(diǎn)處的切線相同。

(1)若,求的值;

(2)用表示,并求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年長(zhǎng)郡中學(xué)二模文)(13分)已知數(shù)列,是其前項(xiàng)的和,且≥2),

(1)求數(shù)列的通項(xiàng)公式;        

(2)設(shè),,是否存在最小的正整數(shù),使得對(duì)于任意的正整數(shù)n,有恒成立?若存在,求出的值;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年長(zhǎng)郡中學(xué)二模文)(13分)設(shè)F是拋物線的焦點(diǎn),過(guò)點(diǎn)M(-1,0)且以為方向向量的直線順次交拋物線于A,B兩點(diǎn)。

(1)當(dāng)時(shí),若的夾角為,求拋物線的方程;

(2)若點(diǎn)A,B滿足,證明為定值,并求此時(shí)△AFB的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案