已知直線交于A,B兩點(diǎn),且(其中O為坐標(biāo)原點(diǎn)),若OMABM,則點(diǎn)M的軌跡方程為 (   )
A.2  B. 
C.1D.4
B

試題分析:聯(lián)立直線方程與拋物線方程并整理得,
設(shè)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004826795729.png" style="vertical-align:middle;" />,所以,所以,代入數(shù)據(jù)可得,所以直線,所以直線恒過(guò)定點(diǎn)(2,0),
因?yàn)?i>OM⊥AB,所以,整理得即為點(diǎn)M的軌跡方程.
點(diǎn)評(píng):解決本小題的關(guān)鍵是根據(jù)可得,從而利用韋達(dá)定理知道,本小題運(yùn)算量比較大,要仔細(xì)運(yùn)算,另外要注意直線過(guò)定點(diǎn)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)拋物線)的準(zhǔn)線與軸交于,焦點(diǎn)為;以、為焦點(diǎn),離心率的橢圓與拋物線軸上方的一個(gè)交點(diǎn)為.

(1)當(dāng)時(shí),求橢圓的方程;
(2)在(1)的條件下,直線經(jīng)過(guò)橢圓的右焦點(diǎn),與拋物線交于、,如果以線段為直徑作圓,試判斷點(diǎn)與圓的位置關(guān)系,并說(shuō)明理由;
(3)是否存在實(shí)數(shù),使得的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為
(1)求橢圓C的方程
(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線-=1的右焦點(diǎn)為,則該雙曲線的離心率等于(   )
   B.    C.   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線與直線交于A,B兩點(diǎn),其中A點(diǎn)的坐標(biāo)是.該拋物線的焦點(diǎn)為F,則(   )
A.7B.C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)已知橢圓的左焦點(diǎn)的坐標(biāo)為,是它的右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn), 的周長(zhǎng)等于
(1)求橢圓的方程;
(2)過(guò)定點(diǎn)作直線與橢圓交于不同的兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知、是橢圓(a>b>0)的兩個(gè)焦點(diǎn),以線段為邊作正三角形M,若邊M的中點(diǎn)在橢圓上,則橢圓的離心率是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若點(diǎn)P在曲線C1上,點(diǎn)Q在曲線C2:(x-2)2y2=1上,點(diǎn)O為坐標(biāo)原點(diǎn),則的最大值是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直線y=x+k與曲線x=恰有一個(gè)公共點(diǎn),則k的取值范圍是___________

查看答案和解析>>

同步練習(xí)冊(cè)答案