11.設(shè){an}是等比數(shù)列,公比q>1,前三項之和為7,前三項之積為8,正項數(shù)列{bn}前n項之和為Tn,b1=1,2Tn=bn(1+bn)(n∈N*).
(1)求{an},{bn}的通項公式;
(2)求{anbn}的前n項和.

分析 (1)由{an}是等比數(shù)列,公比q>1,前三項之和為7,前三項之積為8,可得:$\frac{{a}_{2}}{q}+{a}_{2}+{a}_{2}q$=7,$\frac{{a}_{2}}{q}$×a2×a2q=8,q>1,解得a2,q.可得an.由正項數(shù)列{bn}前n項之和為Tn,b1=1,2Tn=bn(1+bn)(n∈N*).利用當(dāng)n≥2時,2bn=2(Tn-Tn-1),化為:(bn+bn-1)(bn-bn-1-1)=0,bn>0,可得bn-bn-1=1,即可得出.
(2)anbn=n•2n-1,利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.

解答 解:(1)∵{an}是等比數(shù)列,公比q>1,前三項之和為7,前三項之積為8,
∴$\frac{{a}_{2}}{q}+{a}_{2}+{a}_{2}q$=7,$\frac{{a}_{2}}{q}$×a2×a2q=8,q>1,解得a2=2,q=2.
∴an=2n
∵正項數(shù)列{bn}前n項之和為Tn,b1=1,2Tn=bn(1+bn)(n∈N*).
當(dāng)n≥2時,2bn=2(Tn-Tn-1)=bn(1+bn)-bn-1(1+bn-1),
化為:(bn+bn-1)(bn-bn-1-1)=0,bn>0,
∴bn-bn-1=1,
∴數(shù)列{bn}是等差數(shù)列,
∴bn=1+(n-1)=n.
(2)anbn=n•2n-1,
∴數(shù)列{anbn}的前n項和Sn=1+2×2+3×22+…+n•2n-1,
∴2Sn=2+2×22+3×23+…+(n-1)•2n-1+n•2n
∴-Sn=1+2+22+…+2n-1-n•2n=$\frac{{2}^{n}-1}{2-1}$-n•2n=(1-n)•2n-1,
∴Sn=(n-1)•2n+1.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、“錯位相減法”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.以下四個命題中:
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項指標(biāo)檢測,這樣的抽樣是分層抽樣,
②兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近于1,
③某項測量結(jié)果ξ服從正態(tài)分布N (1,a2),P(ξ≤5)=0.81,則P(ξ≤-3)=0.19,
④對于兩個分類變量X與Y的隨機變量K2的觀測值k來說,k越小,判斷“X與Y有關(guān)系”的把握程度越大.
以上命題中其中真命題的個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若不等式組$\left\{\begin{array}{l}x+y-1≤0\\ x-y+1≥0\\ y+\frac{1}{2}≥0\end{array}\right.$表示的區(qū)域Ω,不等式(x-$\frac{1}{2}$)2+y2$≤\frac{1}{4}$表示的區(qū)域為Γ,向Ω區(qū)域均勻隨機撒360顆芝麻,則落在區(qū)域Γ中芝麻數(shù)約為( 。
A.114B.10C.150D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1+x}{1-x}$•e-ax(a>0).
(1)當(dāng)a=2時,求曲線y=f(x)在x=$\frac{1}{2}$處的切線方程;
(2)討論方程f(x)-1=0根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.有三個房間需要粉刷,粉刷方案要求:每個房間只用一種顏色,且三個房間顏色各不相同.三個房間的粉刷面積和三種顏色的涂料費用如表:
 房間A房間B  房間C
 35m2 20m2 28m2
 涂料1涂料2 涂料3
 16元/m2 18元/m2 20元/m2
那么在所有不同的粉刷方案中,最低的涂料總費用是1464元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等比數(shù)列{an}的公比q=3,且a1,a2+2,a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)若bn=log3an+1,且數(shù)列{bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖是計算$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+…+\frac{1}{512}$的值的一個程序框圖,其中判斷框內(nèi)可以填的是( 。
A.n≥12?B.n≥11?C.n≥10?D.n≥9?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項和為Sn,且Sn=n2+2n;數(shù)列{bn}是公比大于1的等比數(shù)列,且滿足b1+b4=9,b2b3=8.
(Ⅰ)分別求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=(-1)nSn+anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若an>0,a1=2,且當(dāng)n≥2時,有an+an-1=$\frac{n}{{a}_{n}-{a}_{n-1}}$+2,求數(shù)列{$\frac{1}{({a}_{n}-1)^{2}}$}的所有項之和.

查看答案和解析>>

同步練習(xí)冊答案