【題目】已知y=f(x)是定義在R上的奇函數(shù),且x<0時,f(x)=1+2x.
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖像;
(3)寫出函數(shù)f(x)的單調區(qū)間及值域.
【答案】(1)f(x)=;(2)見解析;(3)單調增區(qū)間為(-∞,0),(0,+∞);值域為{y|1<y<2或-2<y<-1或y=0}.
【解析】試題分析:(1)根據(jù)已知中y=f(x)是定義在R上的奇函數(shù),若x<0時,f(x)=1+2x,我們易根據(jù)奇函數(shù)的性質,我們易求出函數(shù)的解析式;(2)根據(jù)分段函數(shù)圖象分段畫的原則,即可得到函數(shù)的圖象;(3)根據(jù)函數(shù)的圖象可得函數(shù)的單調區(qū)間及值域;
試題解析:(1)因為y=f(x)是定義在R上的奇函數(shù),
所以f(-0)=-f(0),所以f(0)=0,
因為x<0時,f(x)=1+2x,
所以x>0時,f(x)=-f(-x)
=-(1+2-x)=-1-,
所以
(2)函數(shù)f(x)的圖象為
(3)根據(jù)f(x)的圖象知:
f(x)的單調增區(qū)間為(-∞,0),(0,+∞);
值域為{y|1<y<2或-2<y<-1或y=0}.
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了解學校食堂的服務情況,隨機調查了50名就餐的教師和學生.根據(jù)這50名師生對餐廳服務質量進行評分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為.
(1)求頻率分布直方圖中的值;
(2)從評分在的師生中,隨機抽取2人,求此人中恰好有1人評分在上的概率;
(3)學校規(guī)定:師生對食堂服務質量的評分不得低于75分,否則將進行內部整頓,試用組中數(shù)據(jù)估計該校師生對食堂服務質量評分的平均分,并據(jù)此回答食堂是否需要進行內部整頓.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合Z={(x,y)|x∈[0,2],y∈[-1,1]}.
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班倡議假期每位學生至少閱讀一本名著,為了解學生的閱讀情況,對該班所有學生進行了調查.調查結果如下表:
(1)試根據(jù)上述數(shù)據(jù),求這個班級女生閱讀名著的平均本數(shù);
(2)若從閱讀5本名著的學生中任選2人交流讀書心得,求選到男生和女生各1人的概率;
(3)試比較該班男生閱讀名著本數(shù)的方差與女生閱讀名著本數(shù)的方差的大小(只需寫出結論).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時, 求曲線的極值;
(2)求函數(shù)的單調區(qū)間;
(3)若對任意及時, 恒有成立, 求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若是在定義域內的增函數(shù),求的取值范圍;
(2)若函數(shù)(其中為的導函數(shù))存在三個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線:(為參數(shù)),以坐標原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為,且與相交于兩點.
(1)當時,判斷直線與曲線的位置關系,并說明理由;
(2)當變化時,求弦的中點的普通方程,并說明它是什么曲線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,分別為橢圓:()的左、右兩個焦點.
(1)若橢圓上的點到,兩點的距離之和等于,求橢圓的方程和焦點坐標;
(2)設點是(1)中所得橢圓上的動點,,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com