【題目】已知yf(x)是定義在R上的奇函數(shù),x<0f(x)12x.

(1)求函數(shù)f(x)的解析式;

(2)畫出函數(shù)f(x)的圖像;

(3)寫出函數(shù)f(x)的單調區(qū)間及值域.

【答案】(1)f(x);(2)見解析;(3)單調增區(qū)間為(,0)(0,);值域為{y|1<y<2或-2<y<1y0}.

【解析】試題分析:(1)根據(jù)已知中y=fx)是定義在R上的奇函數(shù),若x0時,fx)=12x,我們易根據(jù)奇函數(shù)的性質,我們易求出函數(shù)的解析式;(2)根據(jù)分段函數(shù)圖象分段畫的原則,即可得到函數(shù)的圖象;(3)根據(jù)函數(shù)的圖象可得函數(shù)的單調區(qū)間及值域;

試題解析:(1)因為yfx)是定義在R上的奇函數(shù),

所以f(-0)=-f0),所以f0)=0,

因為x<0時,fx)=12x,

所以x>0時,fx)=-f(-x

=-(12x)=-1,

所以

2)函數(shù)fx)的圖象為

3)根據(jù)fx)的圖象知:

fx)的單調增區(qū)間為(-0),(0,+);

值域為{y|1<y<2或-2<y<1y0}

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是矩形,的中點交于點,平面.

求證:

,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了解學校食堂的服務情況,隨機調查了50名就餐的教師和學生.根據(jù)這50名師生對餐廳服務質量進行評分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為.

(1)求頻率分布直方圖中的值;

(2)從評分在的師生中,隨機抽取2人,求此人中恰好有1人評分在上的概率;

(3)學校規(guī)定:師生對食堂服務質量的評分不得低于75分,否則將進行內部整頓,試用組中數(shù)據(jù)估計該校師生對食堂服務質量評分的平均分,并據(jù)此回答食堂是否需要進行內部整頓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

(1)若x,yZ,求x+y≥0的概率;

(2)若x,yR,求x+y≥0的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班倡議假期每位學生至少閱讀一本名著,為了解學生的閱讀情況,對該班所有學生進行了調查調查結果如下表:

1試根據(jù)上述數(shù)據(jù),求這個班級女生閱讀名著的平均本數(shù);

2若從閱讀5本名著的學生中任選2人交流讀書心得,求選到男生和女生各1人的概率;

3試比較該班男生閱讀名著本數(shù)的方差與女生閱讀名著本數(shù)的方差的大小只需寫出結論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時, 求曲線的極值;

(2)求函數(shù)的單調區(qū)間;

(3)若對任意時, 恒有成立, 求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若是在定義域內的增函數(shù),求的取值范圍;

(2)若函數(shù)(其中的導函數(shù))存在三個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線為參數(shù),以坐標原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為,相交于兩點

1時,判斷直線與曲線的位置關系,并說明理由;

2變化時,求弦的中點的普通方程,并說明它是什么曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分別為橢圓)的左、右兩個焦點.

(1)若橢圓上的點,兩點的距離之和等于,求橢圓的方程和焦點坐標;

(2)設點是(1)中所得橢圓上的動點,,求的最大值.

查看答案和解析>>

同步練習冊答案