已知遞增等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2a2、a4的等差中項.

    (1){an}的通項公式an;

    (2),Sn=b1+b2++bn,求Sn+n·2n+130成立的n的最小值.

 

答案:
解析:

答案:解:(1)設(shè)此等比數(shù)列為a1q,a1q2,a1q3

    ∴

    ∴a1=2,q=2,∴an=2·2n-1=2n.

    (2),∴Sn=-(n-1)·2n+1-2.

    若Sn+n·2n+1>30,即2n+1>32,n>4,n的最小值是5.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知前n項和為Sn的等差數(shù)列{an}的公差不為零,且a2=3,又a4,a5,a8成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若函數(shù)f(x)=Asin(3x+φ)(A>0,0<φ<π)在x=
π3
處取得最小值為S7,求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)已知遞增數(shù)列滿足: ,且、成等比數(shù)列。(I)求數(shù)列的通項公式;(II)若數(shù)列滿足: ,且。①證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;②設(shè),數(shù)列項和為, ,。當(dāng)時,試比較A與B的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)已知遞增數(shù)列滿足:, ,且、成等比數(shù)列。(I)求數(shù)列的通項公式;(II)若數(shù)列滿足: ,且。①證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;②設(shè),數(shù)列項和為, ,。當(dāng)時,試比較A與B的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省文登市高三上學(xué)期期中統(tǒng)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

給出下列四個命題,其錯誤的是(     )

①已知是等比數(shù)列的公比,則“數(shù)列是遞增數(shù)列”是“”的既不充分也不必要條件;

②若定義在上的函數(shù)是奇函數(shù),則對定義域內(nèi)的任意必有;

③若存在正常數(shù)滿足,則的一個正周期為;

④函數(shù)圖像關(guān)于對稱.

A.②④                   B.④                    C.③                  D.③④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆云南省高二上學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知遞增等比數(shù)列滿足,則

A、1        B、8        C、     D、8或

 

查看答案和解析>>

同步練習(xí)冊答案