已知是函數(shù)的一個極值點,其中
(1)求的關系式;
(2)求的單調(diào)區(qū)間;
(3)設函數(shù)函數(shù)g(x)= ;試比較g(x)與的大小。

(1)
(2) 當時,單調(diào)遞減,在單調(diào)遞增,在上單調(diào)遞減.同理可得:當時,單調(diào)遞增,在單調(diào)遞減,在上單調(diào)遞增
(3) 時 ,g(x) 時,  g(x)

解析試題分析:解(I)因為是函數(shù)的一個極值點,所以,即,所以 3分
(II)由(I)知,=…5分
時,有,當變化時,的變化如下表:





1



0

0

 
 
 
 
 
 

調(diào)調(diào)遞減
極小值
單調(diào)遞增
極大值
單調(diào)遞減
故有上表知,當時,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若為定義域上的單調(diào)增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)當時,求函數(shù)的最大值;
(Ⅲ)當時,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,(1)分別求;(2)然后歸納猜想一般性結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是定義在上的偶函數(shù),且當時,.現(xiàn)已畫出函數(shù)軸左側(cè)的圖像,如圖所示,并根據(jù)圖像

(1)寫出函數(shù)的增區(qū)間;
(2)寫出函數(shù)的解析式;     
(3)若函數(shù),求函數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知.
(1)時,求的極值;
(2)當時,討論的單調(diào)性;
(3)證明:,其中無理數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)寫出該函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)恰有3個不同零點,求實數(shù)的取值范圍;
(3)若對所有恒成立,求實數(shù)n的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)已知,求證:;
(2)已知>0(i=1,2,3,…,3n),求證:
+++…+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若對于任意的,有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是函數(shù)的兩個零點,函數(shù)的最小值為,記
(。┰囂角之間的等量關系(不含);
(ⅱ)當且僅當在什么范圍內(nèi),函數(shù)存在最小值?
(ⅲ)若,試確定的取值范圍。

查看答案和解析>>

同步練習冊答案