精英家教網 > 高中數學 > 題目詳情
(本題滿分14分)
(文)如圖,|AB|=2,O為AB中點,直線過B且垂直于AB,過A的動直線與交于點C,點M在線
段AC上,滿足=.
(I)求點M的軌跡方程;
(II)若過B點且斜率為- 的直線與軌跡M交于點P,點Q(t,0)是x軸上任意一點,求當ΔBPQ為銳角三角形時t的取值范圍。

(1)設A(a,0),B(0,b),P(x,y),由——2’
得點P軌跡方程為——2’
時,C的方程為——1’
設直線方程為與C方程聯(lián)立得-1=0
易得
——2’
點Q到直線的距離為——2’
,當且僅當-2時——1’
S有最大值——2’
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,橢圓的左、右焦點分別為,.已知都在橢圓上,其中為橢圓的離心率.
(1)求橢圓的方程;
(2)設是橢圓上位于軸上方的兩點,且直線與直線平行,交于點P.
(i)若,求直線的斜率;
(ii)求證:是定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

是雙曲線的兩個焦點,點在雙曲線上,且滿足:,,則的值為(   )
A.2B.1 C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分15分)
已知定點A(0,1),B(0,-1),C(1,0).動點P滿足:.
(1)求動點P的軌跡方程,并說明方程表示的曲線類型;
(2)當時,求的最大、最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知以點C (t, )(t∈R),t≠0)為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為坐標原點.
(1)求證:△OAB的面積為定值;
(2)設直線y= –2x+4與圓C交于點MN若|OM|=|ON|,求圓C的方程.
(3)若t>0,當圓C的半徑最小時,圓C上至少有三個不同的點到直線ly的距離為,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分15分)已知點在拋物線上,點到拋物線的焦點F的距離為2.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線與拋物線C交于O (坐標原點),A兩點,直線與拋物線C交于B,D兩點.
(ⅰ) 若 |,求實數的值;
(ⅱ) 過AB,D分別作y軸的垂線,垂足分別為A1,B1D1.記分別為三角形OAA1和四邊形BB1D1D的面積,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過拋物線的焦點的直線與拋物線在第一象限的交點為,與拋物線準線的交點為,點在拋物線準線上的投影為,若的值為______▲_____________

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率為,過右焦點且斜率為的直線與相交于兩點.若,則

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

曲線上點處的切線斜率為4,則點的一個坐標是
A.(0,-2)B.(1, 1)C.(-1, -4) D.(1, 4)

查看答案和解析>>

同步練習冊答案