【題目】已知數(shù)列{an},{bn},滿足a1=b1=3,an+1﹣an= =3,n∈N* , 若數(shù)列{cn}滿足cn= ,則c2017=(
A.92016
B.272016
C.92017
D.272017

【答案】D
【解析】解:∵數(shù)列{an},滿足a1=3,an+1﹣an=3,n∈N* ,
∴an=a1+(n﹣1)d=3+3(n﹣1)=3n.
∵數(shù)列{bn},滿足b1=3, =3,n∈N* ,
∴bn=b1qn1=3×3n1=3n
∵數(shù)列{cn}滿足cn= ,
∴c2017= =b3×2017=272017
故選D.
【考點精析】解答此題的關鍵在于理解數(shù)列的通項公式的相關知識,掌握如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,AC為⊙O的直徑,D為 的中點,E為BC的中點.

(1)求證:DE∥AB;
(2)求證:ACBC=2ADCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù));以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求曲線的普通方程與曲線的直角坐標方程;

(Ⅱ)若把曲線各點的橫坐標伸長到原來的倍,縱坐標變?yōu)樵瓉淼?/span>,得到曲線,求曲線的方程;

(Ⅲ)設為曲線上的動點,求點到曲線上點的距離的最小值,并求此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項目在冬奧會金牌零的突破.根據短道速滑男子米的比賽規(guī)則,運動員自出發(fā)點出發(fā)進入滑行階段后,每滑行一圈都要依次經過個直道與彎道的交接口.已知某男子速滑運動員順利通過每個交接口的概率均為,摔倒的概率均為.假定運動員只有在摔倒或到達終點時才停止滑行,現(xiàn)在用表示該運動員滑行最后一圈時在這一圈內已經順利通過的交接口數(shù).

(1)求該運動員停止滑行時恰好已順利通過個交接口的概率;

(2)求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,a≠1,設p:函數(shù)y=loga(x+3)在(0,+∞)上單調遞減,q:函數(shù)yx2+(2a-3)x+1的圖像與x軸交于不同的兩點.如果pq真,pq假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A是拋物線M:y2=2px(p>0)與圓C:x2+(y﹣4)2=a2在第一象限的公共點,且點A到拋物線M焦點F的距離為a,若拋物線M上一動點到其準線與到點C的距離之和的最小值為2a,O為坐標原點,則直線OA被圓C所截得的弦長為( )
A.2
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)對任意的m,nR都有f(mn)=f(m)+f(n)-1,并且x>0時,恒有f(x)>1.

(1)求證:f(x)R上是增函數(shù);

(2)f(3)=4,解不等式f(a2a-5)<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓O:x2+y2=4,點F( ,0),以線段MF為直徑的圓內切于圓O,記點M的軌跡為C
(1)求曲線C的方程;
(2)若過F的直線l與曲線C交于A,B兩點,問:在x軸上是否存在點N,使得 為定值?若存在,求出點N坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示,則函數(shù)f(x)的解析式為

查看答案和解析>>

同步練習冊答案