【題目】在中,已知、.
(1)若點的坐標為,直線,直線交邊于,交邊于,且與的面積之比為,求直線的方程;
(2)若是一個動點,且的面積為,試求關于的函數(shù)關系式.
【答案】(1);(2)或.
【解析】
(1)作出圖形,可得出,根據(jù)面積比為得出,從而得出,設點,利用向量的坐標運算求出點的坐標,并求出直線的斜率,即為直線的斜率,然后利用點斜式方程可得出直線的方程;
(2)求出直線的方程和,設點到直線的距離為,利用的面積為求出的值,結(jié)合點到直線的距離公式可求出關于的函數(shù)關系式.
(1),即,,且,
,設點的坐標為,,,
,解得,.
直線的斜率為,,則直線的斜率為.
因此,直線的方程為,即;
(2)直線的方程為,即,
,
設點到直線的距離為,則的面積為,
得,另一方面,由點到直線的距離公式得,
,解得或.
因此,關于的函數(shù)關系式為或.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的兩個焦點分別為和,短軸的兩個端點分別為和,點在橢圓上,且滿足,當變化時,給出下列三個命題:
①點的軌跡關于軸對稱;②的最小值為2;
③存在使得橢圓上滿足條件的點僅有兩個,
其中,所有正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為研究學生的身體素質(zhì)與體育鍛煉時間的關系,對該校200名高三學生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達標 | 鍛煉達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認為“鍛煉達標”與性別有關?
(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出5人,進行體育鍛煉體會交流,再從這5人中選出2人作重點發(fā)言,求作重點發(fā)言的2人中,至少1人是女生的概率.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于數(shù)列:、、、、,若不改變,僅改變、、、中部分項的符號(可以都不改變),得到的新數(shù)列稱為數(shù)列的一個生成數(shù)列,如僅改變數(shù)列、、、、的第二、三項的符號,可以得到一個生成數(shù)列:、、、、.已知數(shù)列為數(shù)列的生成數(shù)列,為數(shù)列的前項和.
(1)寫出的所有可能的值;
(2)若生成數(shù)列的通項公式為,求;
(3)用數(shù)學歸納法證明:對于給定的,的所有可能值組成的集合為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在直三棱柱中,,,其中為棱上的中點,為棱上且位于點上方的動點.
(1)證明:平面;
(2)若平面與平面所成的銳二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對數(shù)的底數(shù),e≈2.718…).
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x,g(x)=x2+ax(其中a∈R).對于不相等的實數(shù)x1,x2,設m=,n=,現(xiàn)有如下命題:
①對于任意不相等的實數(shù)x1,x2,都有m>0;
②對于任意的a及任意不相等的實數(shù)x1,x2,都有n>0;
③對于任意的a,存在不相等的實數(shù)x1,x2,使得m=n;
④對于任意的a,存在不相等的實數(shù)x1,x2,使得m=-n.
其中真命題有___________________(寫出所有真命題的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com