如圖,在四棱錐O﹣ABCD中,底面ABCD四邊長為1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC的中點.
(Ⅰ)證明:直線MN∥平面OCD;
(Ⅱ)求異面直線AB與MD所成角的大;
(Ⅲ)求二面角A﹣OD﹣C的余弦值.
(Ⅰ)證明:取OB中點E,連接ME,NE
∵M(jìn)E∥AB,AB∥CD,
∴ME∥CD
又∵NE∥OC,
∴平面MNE∥平面OCD
∵M(jìn)N平面MNE
∴MN∥平面OCD
(Ⅱ)解:∵CP∥AB
∴∠MDC為異面直線AB與MD所成的角(或其補(bǔ)角)
作AP⊥CD于P,連接MP
∵OA⊥平面ABCD,CD⊥MP,
∵∠ADP= ,
∴DP= ,MD= ,
 ∴AB與MD所成角的大小為 
(Ⅲ)解:分別以AB,AP,AO所在直線為x,y,z軸建立坐標(biāo)系,
則A(0,0,0),O(0,0,2),D( , ,0),P(0 ,0),
 =(0 ,﹣2), =( , ,﹣2), =(0,0,2),
設(shè)平面OCD的法向量為 ,則 ? =0,
  ∴ , y﹣2z=0
取z= ,解得 =(0,4, )
設(shè)平面OAD的法向量為 ,則 ? =0, =0
∴2z′=0, y′﹣2z′=0 取y′=1,則x′=1,
 
∴二面角A﹣OD﹣C的余弦值為 = =     
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD是邊長為1的正方形,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC中點,以A為原點,建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用空間向量解答以下問題
(1)證明:直線BD⊥OC
(2)證明:直線MN∥平面OCD
(3)求異面直線AB與OC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD四邊長為1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC的中點.
(Ⅰ)證明:直線MN∥平面OCD;
(Ⅱ)求異面直線AB與MD所成角的大小;
(Ⅲ)求二面角A-OD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD四邊長為1的菱形,∠ABC=
π3
,OA⊥底面ABCD,OA=2,M為OA的中點.
(1)求三棱錐B-OCD的體積;
(2)求異面直線AB與MD所成角的余弦值;
注:若直線a⊥平面α,則直線a與平面α內(nèi)的所有直線都垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐O-ABCD中,底面ABCD四邊長為1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC的中點
(1)求三棱錐B-OCD的體積;
(2)求異面直線AB與MD所成角的大。
注:若直線a⊥平面α,則直線a與平面α內(nèi)的所有直線都垂直.

查看答案和解析>>

同步練習(xí)冊答案