12.已知具有線性相關(guān)的兩個變量x,y之間的一組數(shù)據(jù)如表:
x01234
y2.24.3t4.86.7
且回歸方程是$\stackrel{∧}{y}$=0.95x+2.6,則t=( 。
A.2.5B.3.5C.4.5D.5.5

分析 根據(jù)表中數(shù)據(jù),求出$\overline{x}$、$\overline{y}$,代人回歸直線方程,即可求出結(jié)果.

解答 解:根據(jù)表中數(shù)據(jù),得;
$\overline{x}$=$\frac{1}{5}$×(0+1+2+3+4)=2,
$\overline{y}$=$\frac{1}{5}$×(2.2+4.3+t+4.8+6.7)=$\frac{18+t}{5}$,
又樣本中心點在回歸直線$\stackrel{∧}{y}$=0.95x+2.6上,
所以$\frac{18+t}{5}$=0.95×2+2.6,
解得t=4.5.
故選:C.

點評 本題考查了線性回歸方程過樣本中心點的應用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.曲線y=ex+1在點(0,2)處的切線與直線y=0和x=0圍成的三角形面積為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=2x+y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知{an}是等比數(shù)列,a1=1,a2=2,則a1a2+a2a3+…+anan+1=( 。
A.$\frac{2}{3}$(1-4-nB.$\frac{2}{3}$(1-2-nC.$\frac{2}{3}$(4n-1)D.2n+1-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,角A、B、C的對邊分別為a、b、c,且2bsinB=(2a-c)sinA+(2c-a)sinC,acosA=bcosB,求∠A,∠B,∠C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若方程x2+$\frac{{y}^{2}}{a}$=1(a是常數(shù)),則下列結(jié)論正確的是( 。
A.任意實數(shù)a方程表示橢圓B.存在實數(shù)a方程表示橢圓
C.任意實數(shù)a方程表示雙曲線D.存在實數(shù)a方程表示拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={x|lgx≥0},B={x|x≤1},則(  )
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若i為虛數(shù)單位,復數(shù)$\frac{a+i}{2-i}$的實部和虛部互為相反數(shù),那么實數(shù)a=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知log${\;}_{\frac{1}{2}}$b$<lo{g}_{\frac{1}{2}}$a$<lo{g}_{\frac{1}{2}}$c,則( 。
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

同步練習冊答案