【題目】如圖,第1個圖形由正三角形擴展而成,共12個頂點.第n個圖形是由正n+2邊形擴展而來 ,則第n+1個圖形的頂點個數(shù)是 ( )
(1) (2)(3) (4)
A. (2n+1)(2n+2)B. 3(2n+2)C. (n+2)(n+3)D. (n+3)(n+4)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射擊比賽,對他們的射擊水平進行了測試,兩人在相同條件下各射擊10次,命中的環(huán)數(shù)如下:
甲:7,8,6,9,6,5,9,9,7,4.
乙:9,5,7,8,7,6,8,6,7,7.
(1)分別計算甲、乙兩人射擊命中環(huán)數(shù)的極差、眾數(shù)和中位數(shù);
(2)分別計算甲、乙兩人射擊命中環(huán)數(shù)的平均數(shù)、方差、標準差;
(3)比較兩人的成績,然后決定選擇哪一個人參賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組對函數(shù)的圖象和性質(zhì)將進行了探究,探究過程如下,請補充完整.
(1)自變量的取值范圍是除外的全體實數(shù),與的幾組對應(yīng)值列表如下:
其中,_________;
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標系中描點并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分;
(3)觀察函數(shù)圖象,寫出一條函數(shù)性質(zhì);
(4)進一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與軸交點情況是________,所以對應(yīng)方程的實數(shù)根的情況是________;
②方程有_______個實數(shù)根;
③關(guān)于的方程有個實數(shù)根,的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從年月份,某市街頭出現(xiàn)共享單車,到月份,根據(jù)統(tǒng)計,市區(qū)所有人騎行過共享單車的人數(shù)已占,騎行過共享單車的人數(shù)中,有是大學(xué)生(含大中專及高職),該市區(qū)人口按萬計算,大學(xué)生人數(shù)約萬人.
(1)任選出一名大學(xué)生,求他(她)騎行過共享單車的概率;
(2)隨單車投放數(shù)量增加,亂停亂放成為城市管理的問題,以下是累計投放單車數(shù)量與亂停亂放單車數(shù)量之間的關(guān)系圖表:
累計投放單車數(shù)量 | |||||
亂停亂放單車數(shù)量 |
①計算關(guān)于的線性回歸方程(其中精確到值保留三位有效數(shù)字),并預(yù)測當時,單車亂停亂放的數(shù)量;
②已知該市共有五個區(qū),其中有兩個區(qū)的單車亂停亂放數(shù)量超過標準.在“雙創(chuàng)”活動中,檢查組隨機抽取三個區(qū)調(diào)查單車亂停亂放數(shù)量, 表示“單車亂停亂放數(shù)量超過標準的區(qū)的個數(shù)”,求的分布列和數(shù)學(xué)期望.
參考公式和數(shù)據(jù):回歸直線方程中的斜率和截距的最小二乘法估計公式分別為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一容量為50的樣本,數(shù)據(jù)的分組以及各組的頻數(shù)如下:
[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.
(1)列出樣本的頻率分布表.
(2)畫出頻率分布直方圖.
(3)根據(jù)頻率分布表,估計數(shù)據(jù)落在[15.5,24.5)內(nèi)的可能性約是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否在犯錯誤的概率不超過0.5%的前提下認為喜愛打籃球與性別有關(guān)?說明你的理由.下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005] | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標方程;
(2)若曲線截直線所得線段的中點坐標為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,)
(1)若,求函數(shù)的單調(diào)區(qū)間與極值;
(2)若在區(qū)間上至少存在一點,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com