在極坐標(biāo)系中,極點(diǎn)到直線ρcos(θ+
π
6
)=
1
2
的距離是
 
考點(diǎn):簡單曲線的極坐標(biāo)方程
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:先將原極坐標(biāo)方程化成直角坐標(biāo)方程,再利用直角坐標(biāo)方程點(diǎn)到直線的距離進(jìn)行求解即可.
解答: 解:將原極坐標(biāo)方程ρcos(θ+
π
6
)=
1
2
化為:直角坐標(biāo)方程為:
3
x-y-1=0,
原點(diǎn)到該直線的距離是:d=
1
3+1
=
1
2

∴所求的距離是:
1
2

故答案為:
1
2
點(diǎn)評:本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2-x-2,實(shí)數(shù)a>-2
(1)求函數(shù)在-2<x≤a之間的最小值;
(2)求函數(shù)在a≤x≤a+2之間的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)a,b,c滿足:a2+ab+ac+bc=6+2
5
,則3a+b+2c的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

矩陣N=
36
52
的特征值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,曲線ρ=2sinθ與ρcosθ=-
3
2
的交點(diǎn)的極坐標(biāo)為
 
(0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是面A1B1C1D1和AA1D1D的中心,則EF和CD所成的角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一般地,如果函數(shù)y=f(x)的定義域?yàn)閇a,b],值域也是[a,b],則稱函數(shù)f(x)為“保域函數(shù)”,下列函數(shù)中是“保域函數(shù)”的有
 
.(填上所有正確答案的序號)
①f1(x)=x2-1,x∈[-1,1];  
②f2(x)=
π
2
sinx,x∈[
π
2
,π];
③f3(x)=x3-3x,x∈[-2,2];
④f4(x)=x-lnx,x∈[1,e2];
⑤f5(x)=
2x
x2-x+1
,x∈[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1234(26)=
 
(10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
AB
=
a
,
AC
=
b
,且
BD
=
1
2
DC
,則
AD
=( 。
A、
4
3
a
-
1
3
b
B、
2
3
a
+
1
3
b
C、
1
3
a
-
4
3
b
D、
1
3
a
+
2
3
b

查看答案和解析>>

同步練習(xí)冊答案