如圖所示的多面體是由底面為的長方體被截面所截面而得到的,其中.
(Ⅰ)求的長;
(Ⅱ)求二面角E-FC1-C的余弦值.

(Ⅰ)
(Ⅱ)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,邊長為2的正方形中,點的中點,點的中點,將△、△分別沿、折起,使兩點重合于點,連接

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本大題12分)如圖,在棱長為ɑ的正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點.
(1)求直線C與平面ABCD所成角的正弦的值;
(2)求證:平面A B1D1∥平面EFG;
(3)求證:平面AA1C⊥面EFG .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD與底面成30°角.
(1)若AE⊥PD,E為垂足,求證:BE⊥PD;
(2)求異面直線AE與CD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)
ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P為AB的中點.

(1)求證:平面PCF⊥平面PDE;
(2)求證:AE∥平面BCF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在邊長是2的正方體-中,分別為的中點. 應用空間向量方法求 解下列問題.

(1)求EF的長
(2)證明:平面
(3)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

經(jīng)過兩直線的交點,且平行于直線的直線方程是(   ).

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

上的點到直線的距離最大值是(   )

A.2B.1+C.D.1+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

過點和點的直線的傾斜角是(    )

A.B.C.D.

查看答案和解析>>

同步練習冊答案