14.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,點(diǎn)M在棱BB1上,兩條直線MA,MC與平面ABCD所成角均為θ,AC與BD交于點(diǎn)O.
(1)求證:AC⊥OM;
(2)當(dāng)M為BB1的中點(diǎn),且θ=$\frac{π}{4}$時(shí),求二面角A-D1M-B1的余弦值.

分析 (Ⅰ)由 MC與平面ABCD所成角均為θ,得∠MAB=∠MCB=θ.BA=BC.四邊形ABCD為正方形,即可得AC⊥面BDM,即AC⊥OM.
(Ⅱ)  θ=$\frac{π}{4}$時(shí),則有AB=BC=MB,延長(zhǎng)D1M,DB交于點(diǎn)點(diǎn)H,過(guò)點(diǎn)O作ON⊥D1H于點(diǎn)N,連接AN,則∠ANO為二面角A-D1M-B的平面角,利用平面幾何知識(shí)即可求解.

解答 解:(Ⅰ)證明:∵M(jìn)B⊥面ABCD,直線MA,MC與平面ABCD所成角均為θ,∴∠MAB=∠MCB=θ.
故△MBA≌MBC,BA=BC.
∴四邊形ABCD為正方形,AC⊥DB,又AC⊥MB,DB∩MB=B
∴AC⊥面BDM,即AC⊥OM.
(Ⅱ)  θ=$\frac{π}{4}$時(shí),則有AB=BC=MB,延長(zhǎng)D1M,DB交于點(diǎn)點(diǎn)H,
過(guò)點(diǎn)O作ON⊥D1H于點(diǎn)N,連接AN,則∠ANO為二面角A-D1M-B的平面角.
設(shè)AB=1,由△D1DH∽△ONH易得ON=$\frac{\sqrt{6}}{2}$,AO=$\frac{\sqrt{2}}{2}$,
tan∠ANO=$\frac{AO}{ON}=\frac{\sqrt{3}}{3}$,∴∠ANO=30°
二面角A-D1M-B1的余弦值為$\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查了空間線線垂直的判定,幾何法求二面角,考查了轉(zhuǎn)化思想,屬于中檔題,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

同步練習(xí)冊(cè)答案