分析 (Ⅰ)由 MC與平面ABCD所成角均為θ,得∠MAB=∠MCB=θ.BA=BC.四邊形ABCD為正方形,即可得AC⊥面BDM,即AC⊥OM.
(Ⅱ) θ=$\frac{π}{4}$時(shí),則有AB=BC=MB,延長(zhǎng)D1M,DB交于點(diǎn)點(diǎn)H,過(guò)點(diǎn)O作ON⊥D1H于點(diǎn)N,連接AN,則∠ANO為二面角A-D1M-B的平面角,利用平面幾何知識(shí)即可求解.
解答 解:(Ⅰ)證明:∵M(jìn)B⊥面ABCD,直線MA,MC與平面ABCD所成角均為θ,∴∠MAB=∠MCB=θ.
故△MBA≌MBC,BA=BC.
∴四邊形ABCD為正方形,AC⊥DB,又AC⊥MB,DB∩MB=B
∴AC⊥面BDM,即AC⊥OM.
(Ⅱ) θ=$\frac{π}{4}$時(shí),則有AB=BC=MB,延長(zhǎng)D1M,DB交于點(diǎn)點(diǎn)H,
過(guò)點(diǎn)O作ON⊥D1H于點(diǎn)N,連接AN,則∠ANO為二面角A-D1M-B的平面角.
設(shè)AB=1,由△D1DH∽△ONH易得ON=$\frac{\sqrt{6}}{2}$,AO=$\frac{\sqrt{2}}{2}$,
tan∠ANO=$\frac{AO}{ON}=\frac{\sqrt{3}}{3}$,∴∠ANO=30°
二面角A-D1M-B1的余弦值為$\frac{\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查了空間線線垂直的判定,幾何法求二面角,考查了轉(zhuǎn)化思想,屬于中檔題,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com