已知函數(shù)(其中A>0,)的圖像在y軸右側(cè)的第一個(gè)最高點(diǎn)(函數(shù)取最大值的點(diǎn))為M(2,),與x軸在原點(diǎn)右側(cè)的第一個(gè)交點(diǎn)為N(6,0),求這個(gè)函數(shù)的解析式。
解:根據(jù)題意,可知A=,
,所以T=16,
于是,
將點(diǎn)M的坐標(biāo)(2,),代入,得
 
,
所以滿足的最小正數(shù)解為,即,
從而,所求的函數(shù)解析式是。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最大值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,其中a為大于零的常數(shù).
(I)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求a的取值范圍;
(II)設(shè)函數(shù)數(shù)學(xué)公式,若存在x0∈[1,e],使不等式g(x0)≥lnx0成立,求實(shí)數(shù)p的取值范圍.(e為自然對(duì)數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省萊蕪市鳳城高中高三(上)第三次質(zhì)量檢測(cè)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最大值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年四川省成都外國(guó)語(yǔ)學(xué)校高三(下)4月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最大值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南省岳陽(yáng)市炎陵一中高三第六次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最大值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案