【題目】2016年巴西奧運(yùn)會(huì)的周邊商品有80%左右為“中國制造”,所有的廠家都是經(jīng)過層層篩選才能獲此殊榮.甲、乙兩廠生產(chǎn)同一產(chǎn)品,為了解甲、乙兩廠的產(chǎn)品質(zhì)量,以確定這一產(chǎn)品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品共98件中分別抽取9件和5件,測(cè)量產(chǎn)品中的微量元素的含量(單位:毫克).下表是從乙廠抽取的5件產(chǎn)品的測(cè)量數(shù)據(jù):
編號(hào) | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
(1)求乙廠生產(chǎn)的產(chǎn)品數(shù)量:
(2)當(dāng)產(chǎn)品中的微量元素x、y滿足:x≥175,且y≥75時(shí),該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量:
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為 ,以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.
(1)求橢圓C的方程;
(2)如圖,斜率為 的直線l與橢圓C交于A,B兩點(diǎn),點(diǎn)P(2,1)在直線l的上方,若∠APB=90°,且直線PA,PB分別與y軸交于點(diǎn)M,N,求線段MN的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=lnx﹣ax2+(2﹣a)x,a∈R.
(1)求g(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)=g(x)+(a+1)x2﹣2x,x1 , x2(x1<x2)是函數(shù)f(x)的兩個(gè)零點(diǎn),f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),證明:f′( )<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且滿足4cos2 ﹣cos2(B+C)= ,若a=2,則△ABC的面積的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)函數(shù)中,在定義域上不是單調(diào)函數(shù)的是( )
A.y=﹣2x+1
B.y=
C.y=lgx
D.y=x3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x0∈R使得關(guān)于x的不等式|x﹣1|﹣|x﹣2|≥t成立.
(1)求滿足條件的實(shí)數(shù)t集合T;
(2)若m>1,n>1,且對(duì)于t∈T,不等式log3mlog3n≥t恒成立,試求m+n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為: . .
參考數(shù)據(jù):(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2017年農(nóng)村居民家庭人均純收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5:不等式選講
已知 = ( ).
(Ⅰ)當(dāng) 時(shí),解不等式 .
(Ⅱ)若不等式 對(duì) 恒成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com