16.已知函數(shù)f(x)=x3+ax+8的單調(diào)遞減區(qū)間為(-5,5),求函數(shù)f(x)的遞增區(qū)間.

分析 求出函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)減區(qū)間,求出a,然后利用導(dǎo)數(shù)等于0,求出增區(qū)間即可.

解答 解:函數(shù)f(x)=x3+ax+8,可得f′(x)=3x2+a.
∵(-5,5)是函數(shù)y=f(x)是單調(diào)遞減區(qū)間,則-5、5是方程3x2+a=0的根,
∴a=-75.此時(shí)f′(x)=3x2-75
令f′(x)>0,則3x2-75>0.解得x>5或x<-5.
∴函數(shù)y=f(x)的單調(diào)遞增區(qū)間為(-∞,-5)和(5,+∞).

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n-1}{2n+3}$,則$\frac{{a}_{9}}{_{10}}$=$\frac{50}{41}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知Sn是數(shù)列{an}的前n項(xiàng)和,且an=nsin$\frac{nπ}{3}$(n∈N*),則S50等于(  )
A.-24$\sqrt{3}$B.24$\sqrt{3}$C.-$\frac{75\sqrt{3}}{2}$D.$\frac{51}{2}\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)點(diǎn)P(x,y)滿足條件$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y≤2x+2}\end{array}\right.$,點(diǎn)Q(a,b)滿足ax+by≤1恒成立,其中O是原點(diǎn),a≤0,b≥0,則Q點(diǎn)的軌跡所圍成的圖形的面積為( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若函數(shù)f(x)=aln(x+$\sqrt{{x^2}+1}$)+$\frac{{{2^x}-1}}$+$\frac{b+6}{2}$(a,b為常數(shù)),在(0,+∞)上有最小值4,則函數(shù)f(x)在(-∞,0)上有( 。
A.最大值4B.最小值-4C.最大值2D.最小值-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知F1(-$\sqrt{2}$,0)、F2($\sqrt{2}$,0)為橢圓的焦點(diǎn),A為其上頂點(diǎn),∠F1AF2=90°,則圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.方程x2+y2cosα=1,α∈(0,π)表示的曲線不可能是( 。
A.B.橢圓C.雙曲線D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知記號(hào)max{a,b}=$\left\{\begin{array}{l}{a;a≥b}\\{b;a<b}\end{array}\right.$,f(x)=max{tanπx,sinπx},則直線y=$\frac{1}{2}$與g(x)=|f(x)cosπx|的圖象在區(qū)間[0,n],n∈N*內(nèi)交點(diǎn)的橫坐標(biāo)之和記為Sn,則Sn=n2-$\frac{n}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=sinx•cos(x-$\frac{π}{6}$)+cos2x-$\frac{1}{2}$.
(1)求函數(shù)f(x)的最大值,并寫(xiě)出f(x)取最大值x時(shí)的取值集合;
(2)求函數(shù)f(x)在[一$\frac{π}{4}$,$\frac{π}{3}$]上的減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案