(本小題滿分13分) 已知拋物線與直線相交于兩點.
(1)求證:以為直徑的圓過坐標(biāo)系的原點;(2)當(dāng)的面積等于時,求的值.
(1)見解析(2)
解析試題分析:(1)證明:由方程組,消去整理得:,
設(shè),由韋達(dá)定理得:
∵在拋物線上,∴.
∵,∴OA⊥OB.
故以為直徑的圓過坐標(biāo)系的原點. ……6分
(2)解:設(shè)直線與軸交于,又顯然,∴令則,即(-1,0).
,
,解得. ……13分
考點:本小題綜合考查了直線與拋物線的位置關(guān)系、弦長公式及圓、三角形面積公式,考查了學(xué)生數(shù)形結(jié)合思想和劃歸思想及運算求解能力.
點評:直線與圓錐曲線的相交問題一般是聯(lián)立方程組,設(shè)而不求,借助根的判別式及根與系數(shù)的關(guān)系進行轉(zhuǎn)化.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知雙曲線的離心率為,且過點P().
(1)求雙曲線C的方程;
(2)若直線與雙曲線C恒有兩個不同的交點A,B,且
(其中O為原點),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)雙曲線的兩個焦點分別為,離心率為2.
(Ⅰ)求此雙曲線的漸近線的方程;
(Ⅱ)若、分別為上的點,且,求線段的中點的軌跡方程,并說明軌跡是什么曲線;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)
如圖,橢圓C:+=1(a>b>0)的焦點F1,F(xiàn)2和短軸的一個端點A構(gòu)成等邊三角形,
點(,)在橢圓C上,直線l為橢圓C的左準(zhǔn)線.
(1) 求橢圓C的方程;
(2) 點P是橢圓C上的動點,PQ ⊥l,垂足為Q.
是否存在點P,使得△F1PQ為等腰三角形?
若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)A1、A2是雙曲線的實軸兩個端點,P1P2是雙曲線的垂直于軸的弦,
(Ⅰ)直線A1P1與A2P2交點P的軌跡的方程;
(Ⅱ)過與軸的交點Q作直線與(1)中軌跡交于M、N兩點,連接FN、FM,其中F,求證:為定值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓為正整數(shù),為常數(shù).曲線在點處的切線方程為.
(Ⅰ)求函數(shù)的最大值;
(Ⅱ)證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com