【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調(diào)查活動(一人答一份).現(xiàn)從回收的年齡在2060歲的問卷中隨機(jī)抽取了100份, 統(tǒng)計(jì)結(jié)果如下面的圖表所示.

年齡

分組

抽取份

數(shù)

答對全卷的人數(shù)

答對全卷的人數(shù)占本組的概率

[20,30)

40

28

0.7

[30,40)

n

27

0.9

[40,50)

10

4

b

[50,60]

20

a

0.1

(1)分別求出n, a, b, c的值;

(2)從年齡在[40,60]答對全卷的人中隨機(jī)抽取2人授予“環(huán)保之星”,求年齡在[50,60] 的人中至少有1人被授予“環(huán)保之星”的概率.

【答案】(1);(2).

【解析】試題分析:(1)根據(jù)頻率直方分布圖,通過概率的和為1,求求出n,a,b,c的值,
(2)年齡在[40,50)中答對全卷的4人記為A,B,C,D,年齡在[50,60]中答對全卷的2人記為a,b,分別列舉出所有的基本事件,根據(jù)概率公式計(jì)算即可.

試題解析:

(1)因?yàn)槌槿】倖柧頌?00份,所以n=100-(40+10+20)=30.

年齡在中,抽取份數(shù)為10份,答對全卷人數(shù)為4人,所以b==0.4.

年齡在中,抽取份數(shù)為20份,答對全卷人數(shù)占本組的概率為0.1,所以=0.1,得.

根據(jù)頻率直方分布圖,得(0.04+0.03+c+0.01)×10=1,解得.

(2)因?yàn)槟挲g在中答對全卷的人數(shù)分別為4人與2人.

年齡在中答對全卷的4人記為, , ,年齡在中答對全卷的2人記為, ,則從這6人中隨機(jī)抽取2人授予“環(huán)保之星”獎的所有可能的情況是: , , , , , , , , , , ,共15種(8分).

其中所抽取年齡在的人中至少有1人被授予“環(huán)保之星”的情況是: , , , , , , , 共9種.

故所求的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某地區(qū)兒童的身高與體重的一組數(shù)據(jù),我們用兩種模型①,②擬合,得到回歸方程分別為 ,作殘差分析,如表:

身高

60

70

80

90

100

110

體重

6

8

10

14

15

18

0.41

0.01

1.21

-0.19

0.41

-0.36

0.07

0.12

1.69

-0.34

-1.12

(Ⅰ)求表中空格內(nèi)的值;

(Ⅱ)根據(jù)殘差比較模型①,②的擬合效果,決定選擇哪個(gè)模型;

(Ⅲ)殘差大于的樣本點(diǎn)被認(rèn)為是異常數(shù)據(jù),應(yīng)剔除,剔除后對(Ⅱ)所選擇的模型重新建立回歸方程.

(結(jié)果保留到小數(shù)點(diǎn)后兩位)

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABOABO中,AOB=90°,側(cè)棱OO′⊥OAB,OAOBOO′=2.C為線段OA的中點(diǎn),在線段BB上求一點(diǎn)E,使|EC|最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某顏料公司生產(chǎn)、兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過噸、噸、噸,如果產(chǎn)品的利潤為元/噸, 產(chǎn)品的利潤為元/噸,則該顏料公司一天內(nèi)可獲得的最大利潤為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).

(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱A1B1C1 - ABC中,側(cè)棱AA1丄底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中點(diǎn),則下列敘述正確的是

A. CC1與B1E是異面直線 B. AC丄平面ABB1A1

C. A1C1∥平面AB1E D. AE與B1C1為異面直線,且AE丄B1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,a1 =-2,a12 =20.

(1)求數(shù)列{an}的通項(xiàng)an ;

(2)若bn=,求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=sin(x﹣30°)+cos(x﹣60°),g(x)=2sin2
(1)若α為第一象限角且f(α)= ,求g(α)之值;
(2)求f(x﹣1080°)≥g(x)在[0,360°]內(nèi)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像在點(diǎn)處的切線方程為.

(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),比較為自然對數(shù)的底數(shù))的大小.

查看答案和解析>>

同步練習(xí)冊答案