“平面α內的兩條直線l、m都平行于平面β”是“α∥β”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分又不必要條件
【答案】分析:先判斷前者成立是否能推出后者成立;反之后者成立是否能推出前者成立,利用充要條件的定義判斷出結論.
解答:解:如圖平面α內的兩條直線l、m都平行于平面β,但兩平面相交.反之 α∥β時,由面面平行的性質,平面α內的兩條直線l、m都平行于平面β

故選B
點評:判斷一個條件是另一個條件的什么條件,一般利用充要條件的定義,先判斷前者成立是否能推出后者成立;反之判斷出后者成立能否推出前者成立
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

命題:
(1)若a、b是異面直線,則一定存在平面α過a且與b平行;
(2)設a、b是異面直線,若直線c、d與a、b都分別相交,則c、d是異面直線;
(3)若平面α內有不共線的三點A、B、C到平面β的距離都相等,則α∥β;
(4)分別位于兩個不同平面α、β內的兩條直線a、b一定是異面直線;
(5)直線a⊥α,b∥α,則a⊥b.
上述命題中,是假命題的有
(2),(3),(4)
(2),(3),(4)
.(填上全部假命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于平面M與平面N,有下列條件:①M、N都垂直于平面Q; ②M、N都平行于平面Q; ③M內不共線的三點到N的距離相等; ④直線l在面M外,m是平面M內的兩條直線,且l∥M,m∥N; ⑤l,m是異面直線,且l∥M,m∥M; l∥N,m∥N,則可判定平面M與平面N平行的條件的個數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)在空間中,下列命題正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

命題:
(1)若a、b是異面直線,則一定存在平面α過a且與b平行;
(2)設a、b是異面直線,若直線c、d與a、b都分別相交,則c、d是異面直線;
(3)若平面α內有不共線的三點A、B、C到平面β的距離都相等,則αβ;
(4)分別位于兩個不同平面α、β內的兩條直線a、b一定是異面直線;
(5)直線a⊥α,bα,則a⊥b.
上述命題中,是假命題的有______.(填上全部假命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

命題:
(1)若a、b是異面直線,則一定存在平面α過a且與b平行;
(2)設a、b是異面直線,若直線c、d與a、b都分別相交,則c、d是異面直線;
(3)若平面α內有不共線的三點A、B、C到平面β的距離都相等,則αβ;
(4)分別位于兩個不同平面α、β內的兩條直線a、b一定是異面直線;
(5)直線a⊥α,bα,則a⊥b.
上述命題中,是假命題的有______.(填上全部假命題的序號)

查看答案和解析>>

同步練習冊答案