設函數(shù)f(x)=
x2-1

(1)判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)證明:函數(shù)f(x)在[1,+∞)上是增函數(shù).
(1)f(x)為偶函數(shù),理由如下:
由x2-1≥0得f(x)的定義域為(-∞,-1]∪[1,+∞),
又f(-x)=f(x),
所以f(x)為偶函數(shù).
(2)設1≤x1<x2,
f(x1)-f(x2)=
x12-1
-
x22-1

=
(x12-1)-(x22-1)
x12-1
+
x22-1
=
x12-x22
x12-1
+
x22-1
,
∵1≤x1<x2,∴
x21
-
x22
<0
x12-1
+
x22-1
>0
,
∴f (x1)-f (x2)<0,即f (x1)<f (x2),
∴函數(shù)f(x)在[1,+∞)上是增函數(shù).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調性.
(2)若f(x)有兩個極值點x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實數(shù)m的值;
(2)當m=2時,若方程f(x)-h(x)=0在[1,3]上恰好有兩個不同的實數(shù)解,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調性?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內既有極大值又有極小值,求實數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習冊答案