已知α、β、γ都是銳角,且cos2α+cos2β+cos2γ=1,求證:
【答案】分析:α、β、γ都是銳角,可以看做長(zhǎng)方體的一條對(duì)角線(長(zhǎng)為1)與相鄰3個(gè)面的夾角,
用長(zhǎng)方體的一頂點(diǎn)上3條棱abc表示tanα、tanβ、tanγ,再用均值不等式a2+b2≥2ab.
解答:解:通過觀察、聯(lián)想:在長(zhǎng)方體中,a2+b2+c2=l2
∵α、β、γ是銳角,∴令=cosα,=cosβ,=cosγ
∴tanα=,tanβ,tanγ,
∴tanαtanβtanγ
點(diǎn)評(píng):本題體現(xiàn)了劃歸轉(zhuǎn)化的數(shù)學(xué)思想方法,注意均值不等式a2+b2≥2ab的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知四邊形ABCD為菱形,AB=6,∠BAD=60°,兩個(gè)正三棱錐P-ABD、S-BCD(底面是正三角形且頂點(diǎn)在底面上的射影是底面正三角形的中心)的側(cè)棱長(zhǎng)都相等,如圖,E、M、N分別在AD、
AB、AP上,且AM=AE=2,AN=
13
AP,MN⊥PE

(Ⅰ)求證:PB⊥平面PAD;
(Ⅱ)求平面BPS與底面ABCD所成銳二面角的平面角的正切
值;
(Ⅲ)求多面體SPABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四邊形為菱形,,兩個(gè)正三棱錐(底面是正三角形且頂點(diǎn)在底面上的射影是底面正三角形的中心)的側(cè)棱長(zhǎng)都相等,點(diǎn)分別在上,且.

 (Ⅰ)求證:;

(Ⅱ)求平面與底面所成銳二面角的平面角的正切值;

(Ⅲ)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四邊形ABCD為菱形,AB=6,∠BAD=60°,兩個(gè)正三棱錐P-ABD、S-BCD(底面是正三角形且頂點(diǎn)在底面上的射影是底面正三角形的中心)的側(cè)棱長(zhǎng)都相等,如圖,E、M、N分別在AD、
AB、AP上,且數(shù)學(xué)公式
(Ⅰ)求證:PB⊥平面PAD;
(Ⅱ)求平面BPS與底面ABCD所成銳二面角的平面角的正切
值;
(Ⅲ)求多面體SPABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年安徽省六校聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知四邊形ABCD為菱形,AB=6,∠BAD=60°,兩個(gè)正三棱錐P-ABD、S-BCD(底面是正三角形且頂點(diǎn)在底面上的射影是底面正三角形的中心)的側(cè)棱長(zhǎng)都相等,如圖,E、M、N分別在AD、
AB、AP上,且
(Ⅰ)求證:PB⊥平面PAD;
(Ⅱ)求平面BPS與底面ABCD所成銳二面角的平面角的正切
值;
(Ⅲ)求多面體SPABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年安徽省六校高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知四邊形ABCD為菱形,AB=6,∠BAD=60°,兩個(gè)正三棱錐P-ABD、S-BCD(底面是正三角形且頂點(diǎn)在底面上的射影是底面正三角形的中心)的側(cè)棱長(zhǎng)都相等,如圖,E、M、N分別在AD、
AB、AP上,且
(Ⅰ)求證:PB⊥平面PAD;
(Ⅱ)求平面BPS與底面ABCD所成銳二面角的平面角的正切
值;
(Ⅲ)求多面體SPABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案