【題目】瑞士數(shù)學家、物理學家歐拉發(fā)現(xiàn)任一凸多面體(即多面體內(nèi)任意兩點的連線都被完全包含在該多面體中,直觀上講是指沒有凹陷或孔洞的多面體)的頂點數(shù)V.棱數(shù)E及面數(shù)F滿足等式,這個等式稱為歐拉多面體公式,被認為是數(shù)學領域最漂亮、簡潔的公式之一,現(xiàn)實生活中存在很多奇妙的幾何體,現(xiàn)代足球的外觀即取自一種不完全正多面體,它是由m塊黑色正五邊形面料和塊白色正六邊形面料構成的.則( )
A.20B.18C.14D.12
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一個由正四棱錐和正四棱柱構成的組合體,正四棱錐的側(cè)棱長為6,為正四棱錐高的4倍.當該組合體的體積最大時,點到正四棱柱外接球表面的最小距離是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某品牌布娃娃做促銷活動:已知有50個布娃娃,其中一些布娃娃里面有獎品,參與者可以先在50個布娃娃中購買5個,看完5個布娃娃里面的結果再決定是否將剩下的布娃娃全部購買,設每個布娃娃有獎品的概率為,且各個布娃娃是否有獎品相互獨立.
(1)記5個布娃娃中有1個有獎品的概率為,當時,的最大值,求;
(2)假如這5個布娃娃中恰有1個有獎品,以上問中的作為p的值.已知每次購買布娃娃需要2元,若有中獎,則中獎者每次可得獎金15元.以最終獎金的期望作為決策依據(jù),是否該買下剩下所有的45個布娃娃;
(3)若已知50件布娃娃中有10個布娃娃有獎品,從這堆布娃娃中任意購買5個,若抽到k個有獎品可能性最大,求k的值.(k為正整數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某玩具廠擬定生產(chǎn)兩款新毛絨玩具樣品,一款為毛絨小豬,另一款為毛絨小狗.由設計圖知,生產(chǎn)這兩款毛絨玩具均需相同材質(zhì)的填充物、長毛絨、天鵝絨,且每個毛絨小豬需填充物、長毛絨、天鵝絨,每個毛絨小狗需填充物、長毛絨、天鵝絨.現(xiàn)有所需填充物、長毛絨、天鵝絨,若每個毛絨小豬與毛絨小狗的出廠價分別為64元、36元,則生這批毛絨玩具的最大銷售額為_______元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知可導函數(shù)f(x)的定義域為,且滿足,,則對任意的,“”是“”的( )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱中,四邊形ABCD為平行四邊形,且點在底面上的投影H恰為CD的中點.
(1)棱BC上存在一點N,使得AD⊥平面,試確定點N的位置,說明理由;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有6名選手參加才藝比賽,其中男、女選手各3名,且3名男選手分別表演歌唱、舞蹈和魔術,3名女選手分別表演歌唱、舞蹈和魔術,若要求相鄰出場的選手性別不同且表演的節(jié)目不同,則不同的出場方式的種數(shù)為( )
A.6B.12C.18D.24
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)在處取得極大值或極小值,則稱為函數(shù)的極值點.設函數(shù).
(1)若函數(shù)在上無極值點,求的取值范圍;
(2)求證:對任意實數(shù),在函數(shù)的圖象上總存在兩條切線相互平行;
(3)當時,若函數(shù)的圖象上存在的兩條平行切線之間的距離為4,問;這樣的平行切線共有幾組?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com