不等式組
y<x
x+2y<4
y>-2
表示的平面區(qū)域的面積為( 。
分析:由給出的不等式作出平面區(qū)域,然后代入三角形面積公式直接求解.
解答:解:如圖,由不等式組
y<x
x+2y<4
y>-2
作出可行域,
y=x
y=-2
,得:A(-2,-2)
x+2y=4
y=-2
,得B(8,-2)
y=x
x+2y=4
,得C(
4
3
,
4
3

所以S△ABC=
1
2
×10×
10
3
=
50
3

故選B.
點(diǎn)評(píng):本題考查了二元一次不等式(組)與平面區(qū)域,解答的關(guān)鍵是會(huì)利用特殊點(diǎn)尋找二元一次不等式表示的平面區(qū)域,此題為基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•海淀區(qū)二模)點(diǎn)P(x,y)在不等式組
y≤2x
y≥-x
x≤2
表示的平面區(qū)域內(nèi),則z=x+y的最大值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式組
y≤x
y≥-x
x≤2
表示的平面區(qū)域?yàn)镸,直線y=x與曲線y=
1
2
x2
所圍成的平面區(qū)域?yàn)镹.
(1)區(qū)域N的面積為
2
3
2
3
;
(2)現(xiàn)隨機(jī)向區(qū)域M內(nèi)拋一粒豆子,則豆子落在區(qū)域N內(nèi)的概率為
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東城區(qū)一模)已知點(diǎn)P(x,y)在不等式組
y≤x
y≥-x
x≤2
表示的平面區(qū)域內(nèi),則z=2x+y的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•開(kāi)封一模)已知點(diǎn)P(x,y)在不等式組
y≤x
y≥-x
x≤2
表示的平面區(qū)域內(nèi),則z=2x+y的最大值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•藍(lán)山縣模擬)已知不等式組
y≤x
y≥-x
x≤2
表示的平面區(qū)域?yàn)镸,直線y=x與曲線y=
1
2
x2
所圍成的平面區(qū)域?yàn)镹,現(xiàn)隨機(jī)向區(qū)域M內(nèi)拋一粒豆子,則豆子落在區(qū)域N內(nèi)的概率為
1
6
1
6

查看答案和解析>>

同步練習(xí)冊(cè)答案