平面向量
a
b
的夾角為60°,
a
=(3,0),|
a
+2
b
|=3
7
,則|
b
|=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用數(shù)量積的性質(zhì)和一元二次方程的解法即可得出.
解答: 解:∵
a
=(3,0),∴|
a
|=3

∵|
a
+2
b
|=3
7

a
2
+4
a
b
+4
b
2
=63,
32+4×3×|
b
|cos60°
+4|
b
|2
=63.
化為2|
b
|2+3|
b
|-27=0
,
(2|
b
|+9)(|
b
|-3)=0
,
|
b
|=3

故答案為:3.
點評:本題考查了數(shù)量積的性質(zhì)和一元二次方程的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,設(shè)圓
x=
6
2
cosθ
y=
6
2
sinθ
(θ為參數(shù))上的點到直線ρ(
7
cosθ-sinθ)=
2
的距離為d,則d的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=3|x+1|+|x-1|-a,則使f(x)≥
3
恒成立的a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在曲線f(x)=x3-2x2+1上點(1,f(1))處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用長為20cm的繩子圍城一扇形,當(dāng)圓心角為
 
rad時扇形的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A、B兩地相距1千米,B、C兩地相距3千米,甲從A地出發(fā),經(jīng)過B前往C地,乙同時從B地出發(fā),前往C地,甲、乙的速度關(guān)于時間的關(guān)系式分別為v1(t)=
4
t+1
和v2(t)=t(單位:千米/小時).甲、乙從起點到終點的過程中,給出下列描述:
①出發(fā)后1小時,甲還沒追上乙;
②出發(fā)后1小時,甲乙相距最遠;
③甲追上乙后,又被乙追上,乙先到達C地;
④甲追上乙后,先到達C地.
其中正確的是
 
.(請?zhí)钌纤忻枋稣_的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log0.5[sin(
π
3
-2x)]的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的偶函數(shù),若對于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時,f(x)=log2(x+1),則當(dāng)x∈(-∞,+∞)時,f(-2011)+f(2012)的值為( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,若a=1,c=2,B=30°,則△ABC的面積為( 。
A、
1
2
B、
3
2
C、1
D、
3

查看答案和解析>>

同步練習(xí)冊答案