此題考查余弦定理、向量數(shù)量積公式、重要不等式的綜合應用,
由已知得
,
又因為
,所以
在
,
在
,所以
,即
,所以最小值是
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
為坐標原點,點
,對于
有向量
,
(1)試問點
是否在同一條直線上,若是,求出該直線的方程;若不是,請說明理由;
(2)是否在存在
使
在圓
上或其內(nèi)部,若存在求出
,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
.如圖,
是邊長為
的正方形,動點
在以
為直徑的圓弧
上,則
的取值范圍是
▲ ;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若有不同的三點
滿足
,則這三點
A.組成銳角三角形 | B.組成直角三角形 |
C.組成鈍角三角形 | D.在同一條直線上 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知點A(-1,0),B(1,3),向量
=(2k-1,2),若
⊥
,則實數(shù)k=
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
、
是兩個單位向量,它們的夾角是
,設
,則向量
與
的夾角大小是 ________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
=1,
=2,
與
的夾角為60°。
(1)求:
,(
)·(
);(2)求:
。
查看答案和解析>>