直線(xiàn)L經(jīng)過(guò)點(diǎn)P(1,2),且被兩直線(xiàn)L1:3x-y+2=0和 L2:x-2y+1=0截得的線(xiàn)段AB中點(diǎn)恰好是點(diǎn)P,求直線(xiàn)L的方程.
考點(diǎn):直線(xiàn)的點(diǎn)斜式方程
專(zhuān)題:直線(xiàn)與圓
分析:設(shè)A(a,b),則B(2-a,4-b),由A、B分別在L1、L2上,解得:a=
1
5
,b=
13
5
,由此能求出直線(xiàn)L的方程.
解答: 解:設(shè)A(a,b),
∵P(1,2)是AB中點(diǎn),∴B(2-a,4-b),
又∵A、B分別在L1、L2上,
∴方程組
3a-b+2=0
(2-a)-2(4-b)+1=0
,
解得:a=
1
5
,b=
13
5
,
kAP=-
3
4
,直線(xiàn)L方程為y-2=-
3
4
(x-1)

整理,得3x+4y-11=0.
點(diǎn)評(píng):本題考查直線(xiàn)方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意中點(diǎn)坐標(biāo)公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若中心在坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸的橢圓經(jīng)過(guò)點(diǎn)(4,0),離心率為
3
2
,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我省某房地產(chǎn)開(kāi)發(fā)商用2016萬(wàn)元購(gòu)得一塊商業(yè)用地,計(jì)劃在此地上建造一棟至少6層、每層2016平方米的樓房.經(jīng)測(cè)算,如果將樓房建造x層,則每平方米的平均建造費(fèi)用為(2016+100x)元,為了使樓房每平方米平均的綜合費(fèi)用最小,此樓房應(yīng)建造多少層?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(sin
1
2
x,1),
n
=(4
3
cos
1
2
x,2cosx),設(shè)函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的解析式.
(2)求函數(shù)f(x),x∈[-π,π]的單調(diào)遞增區(qū)間.
(3)設(shè)函數(shù)h(x)=f(x)-k(k∈R)在區(qū)間[-π,π]上的零點(diǎn)的個(gè)數(shù)為n,試探求n的值及對(duì)應(yīng)的k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx),
c
=(-1,0).
(1)若x=
π
6
,求向量
a
c
的夾角;
(2)當(dāng)x∈[
π
2
,
8
]時(shí),求函數(shù)f(x)=2
a
b
+1的最大值,并求此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足Sn=2an-n,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:
n-1
2
a1
a2
+
a2
a3
+…+
an
an+1
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A,B,C的對(duì)邊分別為a,b,c且
a-c
b-c
=
sinB
sinA+sinC

(1)求A;
(2)求函數(shù)y=2sin2B+cos(
π
3
-2B)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD丄CD,AB∥CD,AB=AD=
1
2
CD=2,點(diǎn)M在線(xiàn)段EC上.
(Ⅰ)當(dāng)點(diǎn)M為EC中點(diǎn)時(shí),求證:BM∥平面ADEF;
(Ⅱ)求證:平面BDE丄平面BEC;
(Ⅲ)若平面BDM與平面ABF所成二面角為銳角,且該二面角的余弦值為
6
6
時(shí),求三棱錐M-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
4x
x2+1
,x∈[-2,2]
的最大值是
 
,最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案