【題目】已知全集U=R,集合 ,B={x|1<x<6}
(1)求A∩UB;
(2)已知C={x|a≤x≤a+1},若A∩C=C,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:∵全集U=R,集合 ={x|﹣1≤x≤2},B={x|1<x<6}
∴UB={x|x≤1或x≥6},
則A∩UB={x|﹣1≤x≤2}
(2)解:∵A∩C=C,∴CA,
∴
解得:﹣1≤a≤1,
則實(shí)數(shù)a的范圍是{a|﹣1≤a≤1}
【解析】(1)求出A中不等式的解集確定出A,找出A與B補(bǔ)集的交集即可;(2)利用A∩C=C,可得CA,確定出a的范圍即可.
【考點(diǎn)精析】本題主要考查了交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí)點(diǎn),需要掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(﹣1,1)上的減函數(shù)f(x)且滿足對(duì)任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)
(Ⅰ)判斷函數(shù)f(x)的奇偶性;
(Ⅱ)解關(guān)于x的不等式f(log2x﹣1)+f(log2x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列語(yǔ)句:
① 是無限循環(huán)小數(shù);②x2-3x+2=0;③當(dāng)x=4時(shí),2x>0;
④垂直于同一條直線的兩條直線必平行嗎?⑤一個(gè)數(shù)不是合數(shù)就是質(zhì)數(shù);
⑥作△ABC≌△A'B'C';⑦二次函數(shù)的圖像太美了!
⑧4是集合{1,2,3}中的元素.
其中不是命題的有,是真命題的有.(只填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga ,g(x)=1+loga(x﹣1),(a>0且a≠1),設(shè)f(x)和g(x)的定義域的公共部分為D,
(1)求集合D;
(2)當(dāng)a>1時(shí).若不等式g(x﹣ )﹣f(2x)>2在D內(nèi)恒成立,求a的取值范圍;
(3)是否存在實(shí)數(shù)a,當(dāng)[m,n]D時(shí),f(x)在[m,n]上的值域是[g(n),g(m)],若存在,求實(shí)數(shù)a的取值范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+1滿足f(1+x)=f(1﹣x), .
(1)求函數(shù)f(x)的解析式;
(2)判斷g(x)在[1,2]上的單調(diào)性并用定義證明你的結(jié)論;
(3)求g(x)在[1,2]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x﹣2)=f(x+2)且當(dāng)x∈[﹣2,0]時(shí),f(x)=( )x﹣1,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由大于0的自然數(shù)構(gòu)成的等差數(shù)列{an},它的最大項(xiàng)為26,其所有項(xiàng)的和為70;
(1)求數(shù)列{an}的項(xiàng)數(shù)n;
(2)求此數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com