設(shè)函數(shù)f(x)=lg
ax-5x2-a
的定義域為A,若命題p:3∈A與q:5∈A有且只有一個為真命題,求實數(shù)a的取值范圍.
分析:確定集合A,求出p,q為真時,a的范圍,再根據(jù)p真q假,p假q真,即可求實數(shù)a的取值范圍.
解答:解:A={x|
ax-5
x2-a
>0
},
若p:3∈A為真,則
3a-5
9-a
>0,即
5
3
<a<9;
若q:5∈A為真,則
5a-5
25-a
>0,即1<a<25;
若p真q假,則
5
3
<a<9
a≤1或a≥25
,所以a無解;
若p假q真,則
a≤
5
3
或a≥9
1<a<25
,所以1<a≤
5
3
或9≤a<25.
綜上,a∈(1,
5
3
]∪[9,25).
點評:本題考查命題真假的判斷,考查學(xué)生分析解決問題的能力,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
lg|x|,(x<0)
2x-1,(x≥0)
,若f(x0)>0則x0取值范圍是( 。
A、(-∞,-1)∪(1,+∞)
B、(-∞,-1)∪(0,+∞)
C、(-1,0)∪(0,1)
D、(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lg(x2+ax-a-1),給出下述命題:①f(x)有最小值;②當(dāng)a=0時,f(x)的值域為R;③若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是a≥-4.則其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

24、關(guān)于x的不等式lg(|x+3|-|x-7|)<m.
(Ⅰ)當(dāng)m=1時,解此不等式;
(Ⅱ)設(shè)函數(shù)f(x)=lg(|x+3|-|x-7|),當(dāng)m為何值時,f(x)<m恒成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lg(x2+ax-a),若f(x)的值域為R,則a的取值范圍是
(-∞,-4]∪[0+∞)
(-∞,-4]∪[0+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有下列命題:
①設(shè)a,b為正實數(shù),若a2-b2=1,則a-b<1;
②△ABC若acosA=bcosB,則△ABC是等腰三角形;
③數(shù)列{n(n+4)(
2
3
n中的最大項是第4項;
④設(shè)函數(shù)f(x)=
lg|x-1|,x≠1
0,x=1
則關(guān)于x的方程f2(x)+2f(x)=0有4個解;
⑤若sinx+siny=
1
3
,則siny-cos2x的最大值是
4
3

其中的真命題有
①③
①③
.(寫出所有真命題的編號).

查看答案和解析>>

同步練習(xí)冊答案