【題目】(12分)如圖,已知在直四棱柱中,
,,.
(1)求證:平面;
(2)設(shè)是上一點(diǎn),試確定的位置,使平面,并說明理由.
【答案】見解析。
【解析】
試題(1)因?yàn)榇藥缀问且粋(gè)直棱柱,所以.根據(jù)線面垂直的判定定理,所以只需再證即可.
(2)從圖上分析可確定E應(yīng)為DC的中點(diǎn),然后證明:四邊形A1D1EB是平行四邊形,即可得到D1E//A1B,
根據(jù)線面平行的判定定理,問題得證.
(1)設(shè)是的中點(diǎn),連結(jié),則四邊形為正方形,
.故,,,,即.又,平面,
(2)證明:DC的中點(diǎn)即為E點(diǎn),連D1E,BE
所以四邊形ABED是平行四邊形所以ADBE,又ADA1D1A1D1
所以四邊形A1D1EB是平行四邊形 D1E//A1B ,所以D1E//平面A1BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國2018年1月至12月石油進(jìn)口量統(tǒng)計(jì)圖(其中同比是今年第個(gè)月與去年第個(gè)月之比),則下列說法錯(cuò)誤的是( )
A.2018年下半年我國原油進(jìn)口總量高于2018年上半年
B.2018年12個(gè)月中我國原油月最高進(jìn)口量比月最低進(jìn)口量高1152萬噸
C.2018年我國原油進(jìn)口總量高于2017年我國原油進(jìn)口總量
D.2018年1月—5月各月與2017年同期相比較,我國原油進(jìn)口量有增有減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,則曲線的極坐標(biāo)方程為.
(1)求圓的普通方程與的直角坐標(biāo)方程;
(2)點(diǎn)是曲線上一點(diǎn),由向圓引切線,切點(diǎn)分別為,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修 4-4]參數(shù)方程與極坐標(biāo)系
在平面直角坐標(biāo)系中,已知曲線: ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.已知直線 : .
(Ⅰ)試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;
(Ⅱ)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.
[選修 4-5]不等式選講
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為點(diǎn)是橢圓上任意一點(diǎn),且的最大值為4,橢圓的離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓方程;
(2)設(shè)點(diǎn),過點(diǎn)作直線與圓相切且分別交橢圓于,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(13分)編號(hào)為A1,A2,…,A16的16名籃球運(yùn)動(dòng)員在某次訓(xùn)練比賽中的得分記錄如下:
運(yùn)動(dòng)員編號(hào) | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | |
得分 | 15 | 35 | 21 | 28 | 25 | 36 | 18 | 34 | |
運(yùn)動(dòng)員編號(hào) | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 | |
得分 | 17 | 26 | 25 | 33 | 22 | 12 | 31 | 38 |
(Ⅰ)將得分在對(duì)應(yīng)區(qū)間內(nèi)的人數(shù)填入相應(yīng)的空格;
區(qū)間 | [10,20) | [20,30) | [30,40] |
人數(shù) |
(Ⅱ)從得分在區(qū)間[20,30)內(nèi)的運(yùn)動(dòng)員中隨機(jī)抽取2人,
(i)用運(yùn)動(dòng)員的編號(hào)列出所有可能的抽取結(jié)果;
(ii)求這2人得分之和大于50分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若,函數(shù),若存在、,使得成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com