【題目】某學校的平面示意圖為如下圖五邊形區(qū)域,其中三角形區(qū)域為生活區(qū),四邊形區(qū)域為教學區(qū), 為學校的主要道路(不考慮寬度). .

(1)求道路的長度;(2)求生活區(qū)面積的最大值.

【答案】(1);(2).

【解析】試題分析:(1)連接BD,由余弦定理可得BD,由已知可求 , ,可得 ,利用勾股定理即可得解 的值. (2) ,由正弦定理,可得 ,利用三角函數(shù)恒等變換的應用化簡可得,結(jié)合范圍3,利用正弦函數(shù)的性質(zhì)可求面積的最大值,從而得解.

試題解析:

1

如圖,連接,在中,由余弦定理得:

,.

,

.

中,所以.

2)設,.

中,由正弦定理,得,

.

.

.

,即時, 取得最大值為,

即生活區(qū)面積的最大值為.

注:第(2)問也可用余弦定理和均值不等式求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的主視圖和左視圖如圖(1),它的俯視圖的直觀圖是矩形O1A1B1C1如圖(2),其中O1A1=6,O1C1=2,則該幾何體的側(cè)面積為( )

A.48
B.64
C.96
D.128

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】西部大開發(fā)給中國西部帶來了綠色,人與環(huán)境日趨和諧,群眾生活條件和各項基礎設施得到了極大的改善,西部某地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)利用(Ⅰ)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預測該地區(qū)2017年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

, (其中, 為樣本平均值).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:x2+y2﹣2x+6y=0,則圓心P及半徑r分別為(
A.圓心P(1,3),半徑r=10
B.圓心P(1,3),半徑
C.圓心P(1,﹣3),半徑r=10
D.圓心P(1,﹣3),半徑

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點.若AC=BD=a,且AC與BD所成的角為60°,則四邊形EFGH的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,四個頂點構(gòu)成的菱形的面積是4,圓過橢圓的上頂點作圓的兩條切線分別與橢圓相交于兩點(不同于點),直線的斜率分別為.

(1)求橢圓的方程;

(2)當變化時,①求的值;②試問直線是否過某個定點?若是,求出該定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1:mx﹣y=0,l2:x+my﹣m﹣2=0.
(1)求證:對m∈R,l1與l2的交點P在一個定圓上;
(2)若l1與定圓的另一個交點為P1 , l2與定圓的另一個交點為P2 , 求當m在實數(shù)范圍內(nèi)取值時,△PP1P2的面積的最大值及對應的m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形, ,點的中點.

(1)證明: ;

(2)設點在線段上,且平面,若平面平面,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f (x)=x3﹣12x+8在區(qū)間[﹣3,3]上的最大值與最小值分別為M,m,則M﹣m的值為(
A.16
B.12
C.32
D.6

查看答案和解析>>

同步練習冊答案