考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由數(shù)列{an}的通項公式可知,數(shù)列{an}的所有奇數(shù)項構(gòu)成以2為首項,以2為公差的等差數(shù)列,所有偶數(shù)項構(gòu)成以4為首項,以4為公比的等比數(shù)列,然后分別取n為奇數(shù)和偶數(shù)求得{an}的前n項和.
解答:
解:由a
n=
| n+1,n為正奇數(shù) | 2n,n為正偶數(shù) |
| |
,
可知數(shù)列{a
n}的所有奇數(shù)項構(gòu)成以2為首項,以2為公差的等差數(shù)列,
所有偶數(shù)項構(gòu)成以4為首項,以4為公比的等比數(shù)列.
當n為奇數(shù)時,
Sn=×2+×2++n+1
=
n2+n-+•2n+1;
當n為偶數(shù)時,
Sn=×2+×2+=
n2+-+•2n.
∴{a
n}的前n項和為
Sn= | n2+n-+•2n+1,n為奇數(shù) | n2+-+•2n,n為偶數(shù) |
| |
.
故答案為:
Sn= | n2+n-+•2n+1,n為奇數(shù) | n2+-+•2n,n為偶數(shù) |
| |
.
點評:本題考查了數(shù)列的求和,考查了分類討論的數(shù)學思想方法,考查了學生的計算能力,是中檔題.