1.如圖在直角梯形BB1C1C中,∠CC1B1=90°,BB1∥CC1,CC1=B1C1=2BB1=2,D是CC1的中點(diǎn).四邊形AA1C1C可以通過直角梯形BB1C1C以CC1為軸旋轉(zhuǎn)得到,且二面角B1-CC1-A為120°.
(1)若點(diǎn)E是線段A1B1上的動(dòng)點(diǎn),求證:DE∥平面ABC;
(2)求二面角B-AC-A1的余弦值.

分析 (1)如圖所示,連接B1D,DA1.由已知可得四邊形B1BDC是平行四邊形,B1D∥BC,可得B1D∥平面ABC.同理可得:DA1∥平面ABC.可得平面B1DA1∥平面ABC;即可證明DE∥平面ABC.
(2)作C1M⊥C1B1交A1B1于點(diǎn)M,分別以C1M,C1B1,C1C為x軸,y軸,z軸,建立空間直角坐標(biāo)系.設(shè)平面ABC的法向量為$\overrightarrow{m}$=(x1,y1,z1),則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CA}=0}\\{\overrightarrow{m}•\overrightarrow{CB}=0}\end{array}\right.$,可得$\overrightarrow{m}$.設(shè)平面A1ACC1ABC的法向量為$\overrightarrow{n}$=(x2,y2,z2),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CA}=0}\\{\overrightarrow{n}•\overrightarrow{{C}_{1}C}=0}\end{array}\right.$,可得$\overrightarrow{n}$.利用$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$即可得出.

解答 (1)證明:如圖所示,連接B1D,DA1
由已知可得:$B{B}_{1}\underset{∥}{=}\frac{1}{2}C{C}_{1}\underset{∥}{=}CD$,
∴四邊形B1BDC是平行四邊形,∴B1D∥BC,
而BC?平面ABC,B1D?平面ABC;
∴B1D∥平面ABC.
同理可得:DA1∥平面ABC.又A1D∩DB1=D,
∴平面B1DA1∥平面ABC;DE?平面B1DA1;
∴DE∥平面ABC.
(2)解:作C1M⊥C1B1交A1B1于點(diǎn)M,分別以C1M,C1B1,C1C為x軸,y軸,z軸,建立空間直角坐標(biāo)系.
則C1(0,0,0),A1($\sqrt{3}$,-1,0),B(0,2,1),C(0,0,2),A($\sqrt{3}$,-1,1),
$\overrightarrow{CA}$=($\sqrt{3}$,-1,-1),$\overrightarrow{CB}$=(0,2,-1),$\overrightarrow{{C}_{1}C}$=(0,0,2).
設(shè)平面ABC的法向量為$\overrightarrow{m}$=(x1,y1,z1),則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CA}=0}\\{\overrightarrow{m}•\overrightarrow{CB}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{\sqrt{3}{x}_{1}-{y}_{1}-{z}_{1}=0}\\{2{y}_{1}-{z}_{1}=0}\end{array}\right.$,取$\overrightarrow{m}$=($\sqrt{3}$,1,2).
設(shè)平面A1ACC1ABC的法向量為$\overrightarrow{n}$=(x2,y2,z2),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CA}=0}\\{\overrightarrow{n}•\overrightarrow{{C}_{1}C}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{\sqrt{3}{x}_{2}-{y}_{2}-{z}_{2}=0}\\{2{z}_{2}=0}\end{array}\right.$,取$\overrightarrow{n}$=(1,$\sqrt{3}$,0).
∴$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{2\sqrt{3}}{\sqrt{8}×\sqrt{4}}$=$\frac{\sqrt{6}}{4}$.
∴二面角B-AC-A1的余弦值是$\frac{\sqrt{6}}{4}$.

點(diǎn)評 本題考查了線面面面平行與垂直的判定與性質(zhì)定理、通過法向量的夾角求空間角、數(shù)量積的運(yùn)算性質(zhì),本題考查了學(xué)生的空間想象能力、推理論證能力和運(yùn)算求解能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,是一個(gè)算法流程圖,當(dāng)輸入的x=5時(shí),那么運(yùn)行算法流程圖輸出的結(jié)果是( 。
A.10B.20C.25D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)定義在 R 上的函數(shù)y=f(x),對于任一給定的正數(shù)p,定義函數(shù)fp(x)=$\left\{\begin{array}{l}f(x),f(x)≤p\\ p,f(x)>p\end{array}\right.$,則稱函數(shù) f p (x) 為 f (x) 的“p 界函數(shù)”.關(guān)于函數(shù)f(x)=x2-2x-1的 2 界函數(shù),結(jié)論不成立的是( 。
A.f2(f(0))=f(f2(0))??B.f2(f(1))=f(f2(1))??C.f2(f(2))=f(f2(2))??D.f2(f(3))=f(f2(3))??

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{xn}滿足xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0),且xn+3=xn對于任意正整數(shù)n均成立,則數(shù)列{xn}的前2016項(xiàng)和S2016的值為( 。
A.672B.673C.1342D.1344

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y≥0}\\{x+y-5≤0}\\{y≥\frac{1}{12}{x}^{4}+\frac{1}{4}}\end{array}\right.$,則$\frac{y}{x}$的最小值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=loga(x-3)+2(a>0且a≠1)過定點(diǎn)P,且角α的終邊過點(diǎn)P,則sin2α+cos2α的值為(  )
A.$\frac{7}{5}$B.$\frac{6}{5}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x2+2x-3<0},B={x|0<x<3},則A∩B=( 。
A.(0,1)B.(0,3)C.(-1,1)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$f(x)=sin(x+\frac{π}{2})$,$g(x)=cos(x+\frac{3π}{2})$,則下列結(jié)論中正確的是( 。
A.函數(shù)y=f(x)•g(x)的周期為2
B.函數(shù)y=f(x)•g(x)的最大值為1
C.將f(x)的圖象向左平移$\frac{π}{2}$個(gè)單位后得到g(x)的圖象
D.將f(x)的圖象向右平移$\frac{π}{2}$個(gè)單位后得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.定義min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,已知實(shí)數(shù)x、y滿足|x|≤2,|y|≤2,設(shè)z=min{x+y,2x-y},則z的取值范圍為[-6,3].

查看答案和解析>>

同步練習(xí)冊答案