【題目】已知函數(shù).
(1)證明:函數(shù)在上存在唯一的零點(diǎn);
(2)若函數(shù)在區(qū)間上的最小值為1,求的值.
【答案】(1)證明見解析;(2)
【解析】
(1)求解出導(dǎo)函數(shù),分析導(dǎo)函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)的存在性定理說明在上存在唯一的零點(diǎn)即可;
(2)根據(jù)導(dǎo)函數(shù)零點(diǎn),判斷出的單調(diào)性,從而可確定,利用以及的單調(diào)性,可確定出之間的關(guān)系,從而的值可求.
(1)證明:∵,∴.
∵在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,
∴函數(shù)在上單調(diào)遞增.
又,令,,
則在上單調(diào)遞減,,故.
令,則
所以函數(shù)在上存在唯一的零點(diǎn).
(2)解:由(1)可知存在唯一的,使得,即(*).
函數(shù)在上單調(diào)遞增.
∴當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.
∴.
由(*)式得.
∴,顯然是方程的解.
又∵是單調(diào)遞減函數(shù),方程有且僅有唯一的解,
把代入(*)式,得,∴,即所求實數(shù)的值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有件產(chǎn)品,其中件是次品,其余都是合格品,現(xiàn)不放回的從中依次抽件.求:(1)第一次抽到次品的概率;
(2)第一次和第二次都抽到次品的概率;
(3)在第一次抽到次品的條件下,第二次抽到次品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱底面,,,,,是棱中點(diǎn).
(1)已知點(diǎn)在棱上,且平面平面,試確定點(diǎn)的位置并說明理由;
(2)設(shè)點(diǎn)是線段上的動點(diǎn),當(dāng)點(diǎn)在何處時,直線與平面所成角最大?并求最大角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,為拋物線上的相異兩點(diǎn),且.
(1)若直線過,求的值;
(2)若直線的垂直平分線交軸與點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)分別寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),直線與曲線相交于兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)當(dāng)時,求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng),且時,證明不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記無窮數(shù)列的前n項,,…,的最大項為,第n項之后的各項,,…的最小項為,.
(1)若數(shù)列的通項公式為,寫出,,;
(2)若數(shù)列的通項公式為,判斷是否為等差數(shù)列,若是,求出公差;若不是,請說明理由;
(3)若數(shù)列為公差大于零的等差數(shù)列,求證:是等差數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com